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RESUMO

O recente avanço na capacidade computacional dos microprocessadores permitiu uma expansão

nas pesquisas e aplicações diversas das técnicas de controle avançadas. Neste cenário, as técni-

cas de Controle Preditivo Baseado em Modelo (MPC – do inglês Model Predictive Control) e

o controle fuzzy ganham destaque e popularidade devido as suas atrativas características. Esses

métodos são capazes de tratar sistemas com restrições, incertezas no modelo, não-linearidades e

perturbações externas. Dessa forma, considerando os bons atributos desses métodos, o objetivo

deste trabalho é propor uma lei de controle que une as características dos controladores MPC

com fuzzy. O método proposto consiste em um controle preditivo baseado em modelo fuzzy

(FMPC– do inglês fuzzy Model Predictive Control) com realimentação de saída, ademais um

modelo Takagi-Sugeno (TS) fuzzy e a técnica da compensação distribuída paralela (PDC– do

inglês Parallel-Distributed Compensation) são usados para definição da lei de controle. Para

projetar o controlador proposto, o FMPC com realimentação de estados é usado juntamente

com um observador de estados fuzzy. Seguindo, critérios de estabilidade foram desenvolvidos

de forma a garantir a estabilidade do sistema controlador-observador, considerando as aborda-

gens online e offline do processo. Para realizar a análise do desempenho do controlador duas

aplicações são executadas através de simulação computacional. Primeiro o controlador FMPC

com realimentação de saída é aplicado a um exemplo numérico e depois a um conversor boost.

Ademais, a análise é realizada para as metodologias online e offline, sendo a abordagem online

comparada com controladores MPC com realimentação de saída encontrados na literatura. Os

controladores são avaliados em termos da resposta no tempo, alocação de polos, índices de de-

sempenho e elipsoides de estabilidade. Para ambas aplicações os resultados obtidos mostraram

que o controlador proposto resolve os problemas de controle de forma eficiente, garantindo a

estabilidade e desempenho do sistema mesmo diante de situações limitantes tais como: não-

linearidades, mudança no ponto de operação, restrições de entrada e efeito de fase não-mínima.

Palavras-chave: Controle Preditivo Baseado em Modelo. Controle fuzzy. Modelos Takagi-

Sugeno. Compensação distribuída paralela. Realimentação de saída. Critérios de estabilidade.

Conversor boost.



ABSTRACT

The recent advance in the computational capacity of microprocessors has triggered an expansion

of research and various applications of advanced control techniques. Considering this scenario,

Model Predictive Control (MPC) and fuzzy control approaches gain prominence and popularity

due to their attractive characteristics. These methods are capable of treating systems with con-

straints, uncertainties in the model, non-linearities and external disturbances. Thus, considering

the good attributes of these control methods, the objective of this work is to propose and analyze

a control law which merge the characteristics of MPC and fuzzy control. The proposed method

consists of an output fuzzy model predictive control (FMPC), in addition a Takagi-Sugeno (TS)

fuzzy model and the Parallel-Distributed Compensation (PDC) method is used to define the con-

trol law. In order to analyze the performance of the controller, two applications are run through

computer simulation. First, the FMPC controller with output feedback is applied to a numerical

example and then to a boost converter. Furthermore, the analysis is performed for the online

and offline methodologies, with the online approach being compared with output feedback MPC

found in the literature. The controllers are evaluated in terms of time response, pole allocation,

performance indices and stability ellipsoids. For both applications the obtained results showed

that the proposed controller solves the control problems efficiently, guaranteeing the stability

and performance of the system even in the face of limiting situations such as: non-linearities,

change in the operation point, input constraint and non-minimum phase.

Keywords: Model Predictive Control. Fuzzy Control. Takagi-Sugeno model. Parallel-Distributed

Compensation. Output Feedback. Stability Criteria. Boost Converter.
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1 INTRODUCTION

This study deals with two advanced control techniques: the model predictive control and

the fuzzy control, such methods have been gaining space in both academic and industrial space

due to their viability to real applications. In view of this, this dissertation proposes a control

approach which unites the aforementioned approaches, and also displays the viability of the

proposed control system for two different applications.

Hence, before initiating the theory behind the studied procedures in the following chap-

ters, the present chapter introduces the principal researches and background regarding MPC

and fuzzy control in Section 1.1, another important tools, which are used to design the pro-

posed controller, are also discussed. Furthermore, Section 1.2 brings together the most recent

studies developed for the covered topics. Considering the discussion from Sections 1.1 and 1.2,

the main proposal for this dissertation are listed and explained in Section 1.3 and the general

and specific objectives are described in Section 1.4. Finally, Section 1.5 resumes the subjects

addressed in the following chapters.

1.1 Background and significance of the study

Advances in theories of control and adequacy of the computational capacity of current

microprocessors have allowed the development and application of powerful and sophisticated

control strategies, applied to real plants (VAZQUEZ et al., 2016). Among these advanced strate-

gies, stand out the model predictive control (MPC) and the fuzzy control, since these control

methods feature useful advantages for complex applications, such as, multivariable systems,

nonlinear models, time varying and constrained controllers (MACHADO, 2007).

Concerning MPC theory, there is a well established theoretical knowledge with wide ap-

plications in the most diverse areas, however considering linear model, as affirm Espinosa et al.

(2005). This advanced control technique was first developed and used in the industrial en-

vironment over 40 years ago, and since then has been gaining attention from both academic

and industrial control community (AGUIRRE et al., 2007b). According to Maciejowski (2002)

MPC is the only advanced control method that showed a significant impact in industrial control

processes. Since its first appearance, MPC has been the subject of many researches that pro-

vide its analysis, enhancement and development of new approaches (CAMACHO; BORDONS,

2007). Espinosa et al. (1999) states that this popularity is due to MPC high performance and
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few tuning parameters, which facilitates practical implementations.

There are several MPC control strategies, which are based on the system model to pre-

dict its future behavior. In addition, these control techniques aim to minimize a given cost func-

tion within a prediction horizon. Some examples are the Generalized Predictive Control (GPC),

Robust Model Predictive Control (RMPC) and the Dynamic Matrix control (DMC). The main

difference between MPC strategies lies in the adopted model and cost function, as define

Camacho e Bordons (2007).

Among MPC’s methods, the procedure developed by Kothare et al. (1996) highlights.

This control law found many applications due to its capacity to guarantee the stability and per-

formance, even when subject to system constraints, model uncertainties, multivariable process,

disturbances, reference trajectory tracking and time delay. Furthermore, the study made by

Kothare et al. (1996) is based on the linear matrix inequalities (LMI) methodology, which helps

improving the controller application, since this technique is able to solve convex optimization

problems in polynomial time, and can easily represent robust control theory.

Although MPC characteristics allow the resolution of several linear problems efficiently,

there are still some drawbacks for this method as pointed by Yu-Geng et al. (2013). These diffi-

culties are evidenced when MPC is proposed for controlling nonlinear systems, which results in

a complex control structures, with high computational and time burden, as affirm Khairy et al.

(2010). Furthermore, the gap still existing between the theoretical and practical aspects of MPC

application can also be highlighted (ESPINOSA et al., 1999). Oppositely, fuzzy controllers

are well suitable for dealing with nonlinear models. According to Kovacic e Bogdan (2006),

this aspect explains the increase in applications using this approach, as well as the necessity of

controlling process with model uncertainties, and systems with undefined disturbances.

As with MPC, fuzzy logic is inserted in the control scenario for a long time, this theory

is part of the artificial intelligence (AI) methods, which is used to mimic human knowledge and

way of thinking in order to solve real problems with efficiency. The first fuzzy logic approach

was introduced by Zadeh (1965) with the objective of offering a way to translate the human

way of thinking using linguistic values, developing a new class of systems named fuzzy sets

(MACHADO, 2003). Furthermore, the theory developed by Zadeh (1965) was only used to

solve a control problem in the discussion addressed by Mamdani (1974), which applied a fuzzy

algorithm to control a steam engine, proving the potential of such controllers.

Nowadays, fuzzy control applications are common and diverse, specially for modelling
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systems, as Espinosa et al. (1999) highlight. In this sense, the Takagi-Sugeno (TS) method-

ology (TAKAGI; SUGENO, 1985) offers a popular alternative to model systems using fuzzy

theory, because of its proven feature as an universal approximator (TANAKA; WANG, 2001;

SEIDI et al., 2012). Furthermore, T–S fuzzy models unites the qualitative knowledge of the

system, through its fuzzy rules, and the system quantitative knowledge given by the adopted

models (FENG, 2018).

Usually, the Parallel-Distributed Compensation (PDC) scheme is used to design a con-

troller for a TS modeled systems. For this procedure, a control law is described using the same

structure as a T-S fuzzy model. This approach was first designed in Sugeno e Kang (1986) and

then improved by Tanaka e Sugeno (1992), although it was only in Wang et al. (1996) that the

PDC methodology was established and received its name.

Because of the ability of MPC to perform well when controlling systems with uncer-

tainties and constrained, and the ability of fuzzy techniques to deal with non-linear systems,

researches has been developed aggregating the characteristics of MPC and fuzzy control, in

order to achieve control laws with greater ability to deal with real systems (ESPINOSA et al.,

1999). These approaches are called Fuzzy Model Predictive Control (FMPC). Considering the

different types of MPC strategies, diverse FMPC controllers was proposed over the years, as in

Hadjili et al. (1998), Huang et al. (2000) and Li et al. (2006).

Notwithstanding the solving characteristics for FMPC controllers, another limitation

is often found for practical control applications: the need to measure all states of the system,

which in practice is not always possible. An alternative to solve this problem is the use of a state

observer to estimate the states of the system, thus featuring a control law with observer-based

output feedback (PARK et al., 2011). According to Kim et al. (2006), this type of strategy often

presents difficulties in assuring the controlled system stability. Hence, the present studied fol-

lows the procedures developed by Wan e Kothare (2002), in which the state feedback controller

and the state observer are designed individually, and then a stability criteria for their joint action

is assessed.

Besides the aforementioned control strategies, this dissertation also deals with applica-

tion for the studied methods. For this aspect of the proposed study, advanced control theories

merge with the power electronic field. Following Costa (2017) this intersection is based on

the need to use robust control methods to ensure the stability of power systems, even in the

presence of usual disturbance, such as change of the operating point, constraints to the process,
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non-linearities and non-minimum phase. This need is also reinforced considering the current

development of renewable energy system, which are constantly being subject of studies for

improvements and are commonly integrated into power electronics structures.

Hence, the main purpose of this dissertation is to design a novel observer-based output

feedback FMPC, considering the TS fuzzy model and PDC control law. Also, computational

simulations are performed for a numerical example and a power electronic structure, in order to

evaluate the viability of the method.

1.2 State-of-the-art

In order to complement the significance of the proposal and to understand the current

scenario in which this dissertation is inserted, this section brings recent researches developed

and the still existent gaps that this study aims to fulfill.

Since the MPC and RMPC theories are already consolidated among control researchers,

there are a significant amount of recent researches, covering the most diverse areas, as can be

seen in Oliveira et al. (2018) for a medical application and Chatrattanawet et al. (2017) with a

fuel cells study. Furthermore, the applications given in Araújo e Coelho (2018), Shakeri et al.

(2018), Hajizadeh et al. (2019), Velasquez et al. (2019), Cao et al. (2020) are also worth men-

tioning.

A similar outcome is found in the fuzzy control literature, including applications with

T-S fuzzy modeling, such applications are found in studies as Liu et al. (2020a), which uses

the T-S fuzzy method to design the non-linearities of an switched system, or Maroufi et al.

(2020) with an approach involving wind energy. Besides, numerous others developments can

be found, some of them are exposed in the following: Zhang et al. (2018), Hesamian et al.

(2018), Ferrari et al. (2019), Cai et al. (2020).

Moving to the FMPC field, there are still many applications and developments, since

exist diverse MPC and fuzzy methods there is a large field of action with studies in chem-

ical engineering, as Teng et al. (2017), the transportation area e.g., Wang et al. (2018) and

Dong et al. (2020), among others. Besides the specific applications, researches dealing with

the improvement of this control theory are found in Yeh et al. (2006), Killian et al. (2015),

Kaheni e Yaghoobi (2020).

Furthermore, the output feedback problem is widely spread and well established in con-

trol theory, with developments as the ones from Gu et al. (2019), Hu e Ding (2019), Manzano et al.
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(2019), Xu e Zhang (2020), Liu et al. (2020b). Nevertheless, when dealing with output feed-

back FMPC procedures the number of researches is reduced and some space for improvements

and new applications are found. In this theme, some research can be cited, such as Tang et al.

(2018), Ping e Pedrycz (2019), in both an output feedback FMPC procedure is found for a TS

fuzzy model. However, some gaps can be pointed out, such as not using the PDC strategy and

using a non fuzzy state observer.

Beyond the output feedback FMPC existing gaps, currently advanced control proce-

dure still has limited applications for power structures, some development in this field are

Narimani et al. (2015), Costa (2017), Biswas et al. (2020), Hou e Li (2020). The researches

limitations are even clearer for FMPC with or without output feedback approaches, some ap-

plications are discussed in Bououden et al. (2012), Baždarić et al. (2017), Rego e Costa (2020).

Note that none of the aforementioned researches proceed an output feedback FMPC applied to

a power electronic structure.

Thus, this study is situated according to the current scenario, and proposes an approach

to satisfy existing gaps for enhancements and application of the proposed method. With this in

mind, the main proposals and objectives of this dissertation are dealt with below.

1.3 Dissertation Proposals

The procedure proposed in this research is to implement an observer-based output feed-

back fuzzy model predictive control and introduce two different applications for the proposed

method. Thus, considering this scope, the main contributions of the dissertation are summarized

as follows:

• Adaptation of the state feedback FMPC control law developed by Li et al. (2000), consid-

ering the RMPC cost function from Kothare et al. (1996), besides a TS fuzzy model and

PDC control;

• Implementation of the fuzzy state observer proposed by Feng (2018), in order to perform

an output feedback control;

• Introduction of two new stability criteria for the observer-controller joint action, one for

the online procedure and the other for the offline approach. These criteria are developed

considering a TS fuzzy system associated with the PDC control strategy and a fuzzy state

observer. This procedure is based on the method found in Wan e Kothare (2002), which

only contemplates a linear model under nominal conditions.
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• Development of methodologies considering an online and an offline implementation of

the overall method;

• Application of the proposed control procedures for the numerical example of Park et al.

(2011). Furthermore, the simulations results for the online method are compared with two

output feedback benchmark controllers from Kim e Lee (2017) and Rego (2019). For the

offline strategy the comparison was made with the online method, with the purpose of

evaluate the system viability. For both approaches the obtained results are presented and

discussed based on time response, poles allocation, performance indexes and stability

invariant ellipsoid;

• Similarly, an application for the Three State Switching Cell (3SSC) boost converter from

Costa (2017) is addressed. In addition, a comparison is made between the proposed

control and the output feedback relaxed MPC developed in Rego (2019), for the online

approach, and the offline analysis follows the numerical example. Following, the perfor-

mance parameters are the same as those mentioned for the Park et al. (2011) model.

1.4 Objectives

The objectives of this work are divided into general and specifics, as presented by sub-

sections 1.4.1 and 1.4.2.

1.4.1 General objective

The general objective of this study is to propose a new output feedback FMPC control

law, by merging a state feedback fuzzy model predictive control and a fuzzy state observer,

and then proposing a new stability criteria that guarantee the overall system stability. Further-

more, two different applications are implemented with the purpose of evaluating the controller

performance.

1.4.2 Specific objectives

The following specific objectives are set to achieve the general objective.

• Propose a state feedback FMPC controller, based on the work developed by Li et al.

(2000) considering a TS fuzzy model, a PDC control law and the cost function given

for the RMPC from Kothare et al. (1996).
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• Associate the proposed FMPC with the fuzzy state observer from Feng (2018), thus form-

ing an output feedback control.

• Development of new stability criteria for the controller-observer procedure, considering

the online and offline approaches.

• Apply the proposed control law to a numerical example and analyze its performance in

comparison with benchmark controllers, in order to assess the feasibility of the proposal

both online and offline procedures are implemented.

• Apply the proposed control law to a power boost converter and analyze the ability of

the controller in maintain the reference tracking even in the face of limitations such as,

input constraint and time variation. As with the numerical example, the online and offline

approaches are analysed.

• Discuss the main obtained results and propose improvements for future studies.

1.5 Chapters Summary

The rest of the work is organised in sever chapters, each one of them is summarized as

follows.

• Chapter 2 introduces the theoretical aspects of fuzzy control theory, including basics defi-

nitions, the composition of fuzzy systems, the different types of fuzzy systems and finally

the Takagi-Sugeno fuzzy modelling and the Parallel-Distributed Compensation control

approach.

• Chapter 3 addresses the model predictive control theory and the RMPC basic concepts,

also providing a description of the main mathematical tools used to design the LMI-based

RMPC control, such as Schur complement, Lyapunov stability and polytopic uncertain-

ties.

• Chapter 4 describes the main procedures used to define the control law, including the

FMPC state feedback controller, the fuzzy state observer and the proposed stability crite-

ria. Furthermore, theorems are established in order to summarize the proposed procedures

online and offline.

• Chapter 5 proposes an numerical application for the output feedback FMPC. Besides, the

obtained results of the online computer simulation are analyzed in comparison with the

output feedback MPC control laws from Kim e Lee (2017) and Rego (2019). This chapter

also includes an analysis of the offline procedure in comparison with the online approach.
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• Chapter 6 presents and discusses the results obtained from the application of the proposed

control law to a boost converter. With the online procedure analyse made in comparison

with the output feedback MPC from Rego (2019), and the offline approach is evaluated

in contrast with the aforementioned online procedure.

• Chapter 7 includes the main conclusions about the study,and proposals to be developed

in future works.
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2 FUZZY CONTROL

This chapter discusses the theoretical aspects of fuzzy control, starting with a introduc-

tion of basic concepts, such as fuzzy sets and membership functions in Section 2.1. Next,

Section 2.2 presents the three main structures that compose a fuzzy system and Section 2.3 dis-

cusses commonly used configurations for these systems. Moreover, the Takagi-Sugeno fuzzy

design is detailed along with the Parallel-Distributed Compensation procedure in Sections 2.4

and 2.5, respectively. Finally, the main contributions of the chapter are highlighted in Section

2.6.

2.1 Basic Definitions

The theories of fuzzy logic and fuzzy sets were introduced by Zadeh (1965) and Zadeh

(1988), with the purpose of representing classes or sets that can not be express using the usual

mathematical logic, for example, common human expressions and thinking as "much grater

than" or "very high".

A classical mathematical set presents values that belongs or not to it, therefore its

boundaries are well-defined. Using the classical logic, a given set A can be defined through

a Membership Function (MF) µA, as given in (2.1).

µA =







1 I f x ∈ A

0 I f x 6∈ A

(2.1)

In contrast, a fuzzy set do not present a well-established boundary, but a gradual tran-

sition represented by a membership function, which allows the representation of linguistic ex-

pressions. Thus, a fuzzy set can be defined as follows: for a collection of objects (or universe

of discourse) X with a generic element given by x, then a fuzzy set B in X is a set of ordered

pairs, as defined by (2.2).

B = {(x, µB(x))| x ∈ X} (2.2)

where, µB(x) represents the membership function of x in B. This function defines a value, or

membership degree, to every x ∈ X and it can assume any value between 0 and 1.

According to Wang (1997), the membership functions for fuzzy sets are crisp mathemati-

cal function used to express a fuzzy description. However, the design of MFs are subjective, thus

different MFs can be used to express the same fuzzy description (JANG et al., 1997). Although
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MFs can assume different forms, the most common are the triangular, trapezoidal, Gaussian

and bell-shaped, which follow the expressions given in (2.3) and are illustrated in Figure 1.

µtriangular(x) =







0, f or x < a

x−a

b−a
f or a ≤ x < b

c− x

c−b
f or b ≤ x < c

0, f or x > c

µtrapezoidal(x) =







0, f or x < a

x−a

b−a
f or a ≤ x < b

1, f or b ≤ x < c

d − x

d − c
f or c ≤ x < d

0, f or x > d

µgaussian = e
−
(

x− c

σ

)2

µbell−shaped =
1

1+

∣
∣
∣
∣

x− c

σ

∣
∣
∣
∣

2b

(2.3)

for the triangular and trapezoidal MF the terms a, b, c and d are defined in Figure 1a and 1b.

Moreover, for the Gaussian and bell-shaped membership functions c represents the center, σ

the width and b controls the slopes at the crossover points (KOVACIC; BOGDAN, 2006).

Figure 1 – Common Membership Functions formats
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Usually, the variables described by the MFs do not assume mathematical values, but

words or expressions. Such variables are called linguistic variables and are necessary to rep-

resent the human knowledge on a subject. Take the speed of a car for example, which can

be defined as a linguistic variable that can assume different linguistic values, such as "slow",

"average" or "very fast" (KOVACIC; BOGDAN, 2006).

Following Kovacic e Bogdan (2006), a linguistic variable can be defined by (2.4).

[x,T,X ,µ] (2.4)

where, x is the name (for the previous example: car speed), T represents the set of linguistic

values that can assume (slow, average, very fast), X is the quantitative universe of discourse and

µ the membership functions.

2.2 Fuzzy Systems

Fuzzy control has become one of the most popular and important topic for fuzzy re-

searches, this happened due to fuzzy logic ability to convert human knowledge into a mathemat-

ical model (FENG, 2018; JANG et al., 1997). According to Antão (2017), this strategy made

possible to accurately represent real models and systems, forming the so-called fuzzy systems

or fuzzy models.

Fuzzy systems are rule-based or knowledge-based systems that use fuzzy logic to rep-

resent the existent knowledge for a specific problem or to model the relation of the variables

of a given system. The basic structure for these systems is composed of: knowledge base, in-

ference engine, fuzzification and defuzzification interface, which are detailed in the following

subsections (KACPRZYK; PEDRYCZ, 2015; FENG, 2018).

2.2.1 Knowledge base

The knowledge base is the foundation of a fuzzy model, and is formed by a rule base

and a database. The latter gathers all membership functions, terms used to combine the rules,

and linguist variables definitions (GEORGIEVA, 2016). As for the rule base, is constitute of a

set of If-then rules and is the key part of a fuzzy system, in which all the others components are

used to implement these rules efficiently (WANG, 1997; KACPRZYK; PEDRYCZ, 2015). The



23

rule base is commonly express as a list of if-then rules, as shown in (2.5).

Rule (1) : IF x1 is A
(1)
1 and . . . and xn is A

(1)
n T HEN y is B1

Rule (2) : IF x1 is A
(2)
1 and . . . and xn is A

(2)
n T HEN y is B2

...

Rule (r) : IF x1 is A
(r)
1 and . . . and xn is A

(r)
n T HEN y is Br

(2.5)

where r represents the number of fuzzy rules in the rule base, Al
i and Bl are linguistic values,

x = (x1, x2, . . . , xn)
T and y are the input and output (I/O) linguistic variables, respectively.

Note that each If-Then rule can be divided into an antecedent part (If . . .) and the con-

sequent part (Then . . .). Using traditional logic the if-then rule is only activate if x is exactly

equal to A, then, the variable y is going to be precisely B. Whereas using fuzzy logic, the rule

will be enabled when there is some degree of similarity between x (or premise variable) and A,

as a result y will have some degree of similarity with B. The rules that form the rule base are

necessary to represent human knowledge on a subject in order to achieve a solid fuzzy system.

Moreover, the size of the fuzzy rule base depends on the number of input, output and linguistic

variables that composes a system (MOZELLI, 2008; KOVACIC; BOGDAN, 2006).

The rule form of (2.5) is called canonical rule, and can include special cases of if-then

rules, such as or rules, single fuzzy statement and gradual rules, which are represented as follows

(WANG, 1997).

• Or Rules:

IF x1 is A
(l)
1 and . . . and xm is A

(1)
m

or xm+1 is A
(l)
m+1 and . . . and xn is A

(1)
n

T HEN y is Bl

(2.6)

• Single fuzzy statement:

y is Bl (2.7)

• Gradual rules:

T he smaller the x, the bigger the y. (2.8)

2.2.2 Fuzzy Inference System

The fuzzy inference system is responsible for interpreting the information defined on

the knowledge base and produce an corresponding output. According to Mozelli (2008) and

Passino et al. (1998), this procedure can be separated in four different steps:
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1. Computing the compatibility degree of the premise variables with the rules antecedent, in

(2.5) for example, would be defining the membership of xn in the set A
(l)
n .

2. Defining the activation degree of a given rule. Mozelli (2008) states that this degree is

obtained by combining the compatibility degrees from the first step. For the rules given in

(2.5), each antecedent (xn is Al
n) has a membership degree µ

A
(l)
n

and the activation degree

is given by the association of all membership degrees, following the logical connectives

of the rule.

3. The two aforementioned steps match the input information with the premises of the if-

then rules, and the third step procedures produce the corresponding output. The activation

degree establishes the consequent result, considering the example, for a activation degree

equal to 1 the consequent y is B(l).

4. The final procedure is called aggregation, which consists in combining the consequent of

each rule, resulting in a fuzzy set or function.

2.2.3 Fuzzifiers and Defuzzifiers

The inference system processes a fuzzy set (input) resulting in another fuzzy set (output).

However, most real applications use as input and output real values. Thus, it is necessary an in-

terface between the environment and the inference system, which converts real values into fuzzy

sets and vice-versa. These interfaces are known as fuzzifiers and defuzzifiers, respectively.

The fuzzification process can be described as a mapping from a real value x ∈ X ⊂ Rn

(input of the process) to a fuzzy set A in X (input of the inference system). Wang (1997)

proposes three usual fuzzifiers: Singleton, Gaussian and Triangular fuzzifiers. The singleton

fuzzifier reduce the computational demand for any type of membership function, however this

fuzzifier cannot subdue input noise. On the other hand, Gaussian and Triangular fuzzifiers are

capable of suppressing input noise, but are only computationally simplified for Gaussian and

triangular membership functions.

Oppositely, the deffuzifier is a mapping from a fuzzy set B in Y (output of the inference

system) to a real value y ∈ Y ⊂ R (output of the process). There are three main deffuzification

methods: center of gravity, center average and maximum deffuzifier. Among them, the center

average type performs better, considering the three evaluation criteria: plausibility, computa-

tional simplicity and continuity (WANG, 1997).
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2.3 Configurations for fuzzy systems

Although fuzzy systems are composed of the basic structures defined in Section 2.2,

exist different associations for these components, forming various fuzzy systems. Following

Wang (1997), three fuzzy systems can be highlighted and the main differences between them

are the input and output variables. These systems are:

• Pure fuzzy systems;

• Mamdani fuzzy systems;

• Takagi-Sugeno fuzzy systems.

which will be described as follows.

2.3.1 Pure fuzzy systems

The pure fuzzy system presents the most basic fuzzy system configuration, which is

composed of a fuzzy inference engine and the fuzzy rules (knowledge base). In these systems,

both input and output are fuzzy sets, as illustrates Figure 2. According to Wang (1997), this

feature jeopardize the performance for real applications, since usually the I/O are real value

variables.

Figure 2 – Pure fuzzy systems configuration

Fuzzy Inference

Fuzzy Rules

Fuzzy set U Fuzzy set V

Source: Adapted from Wang (1997)

The scheme showed in Figure 2 can be used to explain the process of pure fuzzy systems.

First, the fuzzy set U ⊂ Rn feeds the fuzzy inference engine, which combines the group of if-

then rules from the knowledge base, and then produces the fuzzy set V ⊂R as an output (WANG,

1997).

2.3.2 Mamdani fuzzy systems

The Mamdami fuzzy systems (or fuzzy systems with fuzzifier and defuzzifier) was pro-

posed by Mamdani (1974) to overcome the main problem of pure fuzzy systems. Thus, for
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these systems although the process is made using fuzzy logic, the input and output are real val-

ues. Therefore, it is necessary a fuzzifier and a defuzzifier throughout the process, as showed in

Figure 3.

Figure 3 – Mamdani fuzzy systems configuration

Fuzzifier

Fuzzy Inference

Fuzzy Rules

Defuzzifier
x ∈U

Fuzzy set U Fuzzy set V

y ∈V

Source: Adapted from Wang (1997)

As illustrated by Figure 3, in the Mamdani configuration first a real value x ∈ U goes

through the fuzzifier, where it is turn into a fuzzy set U ⊂ Rn. Then, this set enters the fuzzy

inference interface, which produces as output a fuzzy set V ⊂ R, considering the fuzzy rules

base. The last step is to use a defuzzifier to turn the fuzzy set V ⊂ R into a real value y ∈V .

2.3.3 Takagi-Sugeno fuzzy systems

As with the Mamdami configuration, Takagi-Sugeno (TS) fuzzy systems also presents

real values variables as input and output. However, for the TS systems the if-then rule are

represented as in (2.9) instead of (2.5), with the consequent as a function of the input values and

not a linguistic variable. This feature makes the TS model more suitable for use in engineering

applications (MACHADO, 2003; BARROS et al., 2016).

Rule (i) :

I f x1 is A
(i)
1 and . . . and xn is A

(i)
n

T hen yi = c
(i)
1 x1 + · · ·+ c

(i)
n xn

(2.9)

The TS fuzzy configuration is given in Figure 4. The process begins with a real value

x ∈U that enters the medium weight interface, which is obtained from the TS knowledge base,

and results in the real value y ∈ V . Furthermore, the TS mathematical process that unites the

rules base and the medium weight and converts an real value into other real value using fuzzy

logic is detailed in Section 2.4.
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Figure 4 – Takagi-Sugeno fuzzy systems configuration

Medium Weight

Fuzzy Rules

x ∈U y ∈V

Source: Adapted from Wang (1997)

2.4 Takagi-Sugeno Mathematical Model

The Takagi-Sugeno fuzzy method has been widely applied to model systems, since this

method is more suitable for engineering application and feature as an universal approximator.

Moreover, these systems are able to represent complex nonlinear models with uncertainties

and disturbances using few if-then rules, and arrange nonlinear and linear control techniques

(MOZELLI, 2008; FENG, 2018).

Following Seidi et al. (2012), a TS fuzzy model represents a nonlinear system through

several locals linear input-output relations. Then, using fuzzy logic, these local subsystems are

aggregated resulting in a global representation of the system.

For a given nonlinear system and considering a discrete fuzzy model, the T-S fuzzy

representation is expressed by a set of If-Then rules as in (2.10).

Rule j :

I f z1(k) = µ j1... and zp(k) = µ jp

T hen







x(k+1) = A jx(k)+B ju(k)

y(k) =C jx(k)+D ju(k)

(2.10)

where, z1(k), . . . , zp(k) are the premise variables, which may be functions of the state variables,

µ jl are fuzzy sets representing the membership degree, with j = 1,2, . . . ,r, and r equal to the

number of fuzzy rules. In addition, the state vector is given by x(k) ∈ Rn, u(k) ∈ Rm is the input

vector and y(k) ∈ Rq the output vector. A j ∈ Rnxn, B j ∈ Rnxm, C j ∈ Rqxn and D j ∈ R
qxm are the

state matrices of the local subsystems.

Besides, according to Tanaka e Wang (2001), the global output of the system is obtained

by the fuzzy association of the linear subsystems and is expressed by (2.11).






x(k+1) =
r

∑
j=1

h j(z(k))(A jx(k)+B ju(k))

y(k) =
r

∑
j=1

h j(z(k))(C jx(k)+D ju(k))

(2.11)
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where h j(z(k)) represents the weight of each rule and is given by (2.12).

h j(z(k)) =
w j(z(k))

r

∑
j=1

w j(z(k))

(2.12)

w j(z(k)) is the activation degree of the jth implication and is given as follows.

w j(z(k)) =
p

∏
l=1

µ jl(z(k)) (2.13)

with, µ jl(z(k)) as the membership degree of z(k) in the fuzzy set µ jl .

Since the activation degree can be affirm as,

r

∑
j=1

w j(z(k))> 0, w j(z(k))≥ 0, j = 1, . . . ,r (2.14)

thus,

r

∑
j=1

h j(z(k)) = 1, h j(z(k))≥ 0, j = 1, . . . ,r (2.15)

2.5 Parallel-Distributed Compensation

The Parallel-Distributed Compensation (PDC) approach was first addressed by Wang et al.

(1995) and offers a controller design which uses the same structure as the TS fuzzy model dis-

cussed in Section 2.4. Therefore, in order to implement the PDC strategy, the nonlinear sys-

tem must be modeled using the TS fuzzy procedure (2.10)-(2.15) (TANAKA; WANG, 2001;

SEIDI et al., 2012).

Mozelli (2008) defines PDC as a methodology in which a local controller is designed

for each TS fuzzy if-then rule, sharing the same fuzzy set as the given model. These local

controllers are then associated forming the control action, this procedure is illustrated in Figure

5. Mathematically, the PDC methodology is described in (2.16).

Control Rule j :

I f z1(k) = µ j1... and zp(k) = µ jp

T hen u(k) =−Fjx(k)

(2.16)

For a given set of local controller described as (2.16), the PDC procedure performs a

fuzzy association of these controllers obtained for each TS Fuzzy rule, resulting in the control

law presented in (2.17).

u(k) =−
(

r

∑
j=1

h j(z(k))Fj

)

x(k) (2.17)
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Figure 5 – PDC Methodology

Rule 1

T-S Subsystems

Rule 1

Fuzzy local controllers Rule 1-1

...

Rule 1-p

...
...

Rule r Rule r

Rule r-1

...

Rule r-p

PDC general controller

. . .

Source: Adapted from Seidi et al. (2012)

Replacing (2.17) in (2.11), the overall closed loop TS fuzzy system is given in (2.18).






x(k+1) = Azx(k)−BzFzx(k)

y(k) =Czx(k)−DzFzx(k)

(2.18)

with, Az, Bz, Cz and Dz representing the TS fuzzy state matrices obtained by the association of

the local state matrices, as given in (2.19). In addition, the fuzzy combination for the gains from

each rule results in the TS fuzzy gain Fz described in (2.20).

Az =
r

∑
j=1

h j(z(k))A j, Bz =
r

∑
j=1

h j(z(k))B j,

Cz =
r

∑
j=1

h j(z(k))C j, Dz =
r

∑
j=1

h j(z(k))D j

(2.19)

Fz =
r

∑
j=1

h j(z(k))Fj (2.20)

Thence, the Parallel-Distributed Compensation technique has the purpose of finding the

gains (Fj) which guarantee systems stability and control. This can be solved through LMI

approach, by calculating the gain set that makes the system stable and also determining the

Lyapunov matrix that assures the global stability of the closed loop system (MOZELLI, 2008).



30

2.6 Chapter’s Summary

This chapter presented the theoretical aspects regarding fuzzy control methods, which

are necessary to complement the fuzzy model predictive control methodology adopted in this

study. To meet this objective, the basic definitions regarding fuzzy set and logic were introduced

as well as the basic interfaces that compose a fuzzy control system. Moreover, the different pos-

sible configuration that a fuzzy system can assume was addressed, and a special consideration

for the Takagi-Sugeno strategy was placed, since is the fuzzy model used throughout the disser-

tation. Lastly, the PDC procedure for controlling TS models was discussed and mathematically

detailed.
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3 MODEL PREDICTIVE CONTROL

The present chapter introduces the model predictive control theory by dealing with the

basic definitions of MPC and the robust MPC strategy in Sections 3.1 and 3.2. Moreover math-

ematical tools commonly used for this control method are defined in Section 3.3, such as LMIs,

Schur complement, Lyapunov criteria and polytopic uncertainties. Lastly, Section 3.4 resumes

the main contributions of the chapter.

3.1 Basic Definitions

Model Predictive Control can be defined as a set of control strategies with shared charac-

teristics, which are based on the prediction ability in a control process. Moreover, MPC strate-

gies execute a control law that minimizes a certain cost function over a prediction horizon. In

summary, the mpc strategy is defined by: (AGUIRRE et al., 2007a; CAMACHO; BORDONS,

2007; WANG, 2009)

• Using an explicit model to predict future system output in a finite horizon. This model

describes the dynamics of the system, including the possible disturbances and uncertain-

ties;

• Calculating a control action which minimizes a given cost function;

• Performing an receding horizon control, for this strategy, although the future control is

fully calculated, only the first control step is implemented. And then, the horizon is moved

one step ahead.

Based on the aforementioned features, exist several MPC strategies, such as the Dy-

namic Matrix Control (DMC) developed by Cutler e Ramaker (1980), the Generalized Predic-

tive Control (GPC) introduced in Clarke et al. (1987) and the Robust Model Predictive Control

of Kothare et al. (1996). According to Aguirre et al. (2007a), the main differences between

MPC methods are the adopted model, cost function and how to handle the control signal and

constrains.

The essence of MPC is the model, which is responsible for represent the process allow-

ing the obtainment of the predicted system output. For this reason, the model must properly rep-

resent the dynamic of the system as well as its uncertainties and disturbances (AGUIRRE et al.,

2007a). Different approaches can be used to design a model of a process, such as truncated

impulse response model and transfer function model, however, the state space model (3.1) is
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the most usual for MPC applications (CAMACHO; BORDONS, 2007).

ẋ = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(3.1)

where, the state variables is given by x(t), the output voltage is given by y(t), u(t) represents

the control signal, and A, B, C and D are state-space matrices.

Furthermore, the cost function (or objective function) depends on the performance ob-

jective of the control, such as, reducing the error between the reference and the output signal,

and reducing the control effort. This function is implemented by the optimization process, in

which is calculated the best result for the evaluated parameters. Usually, the cost function is

represented by a quadratic function as given in (3.2) (WANG, 2009).

J = (Rs − y)T (Rs − y)
︸ ︷︷ ︸

Error

+ uT Ru
︸ ︷︷ ︸

Control Effort

(3.2)

with, Rs as the reference vector and R is a weighting matrix used for tuning the control perfor-

mance.

Following Camacho e Bordons (2007), all MPC methods share the same strategy, which

is illustrated in Figure 6 and detailed as follows: First, at instant t, the future output (ŷ(t + k|t))
is predicted for the prediction horizon (N), considering the process model, the past control and

output signals and the future control input (u(t +k|t)). This control signal is calculated through

an optimization problem, which usually is a quadratic function of the output errors and control

effort. Moreover, for the moving receding horizon the control input (u(t|t)) is sent to the process

and the next control signals are rejected, since the signal y(t+1) is known and is used to update

the control signal for the forthcoming step.

Following Camacho e Bordons (2007), Aguirre et al. (2007a), the basic structure for

implementing the MPC strategy can be defined as illustrates Figure 7, which is explained as

follows: the current control and output (u(t) and y(t)) are used together with the model to

define the predicted output of the system (ym). This information is then used in a optimization

process, which performs the minimization of an objective function, considering the reference

and constrains of the system; and results in the new control step (AGUIRRE et al., 2007a;

CAMACHO; BORDONS, 2007).
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Figure 6 – Reciding Horizon

t −1 t t +1 . . . t + k . . . t +N

y(t)
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Source: Adapted from Camacho e Bordons (2007)

Figure 7 – MPC basic configuration
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Source: Adapted from Aguirre et al. (2007a)

3.2 Robust Model Predictive Control

A robust control is set to maintain a system stability and performance even in the face

of uncertainties or disturbances. For these purpose a robust controller explicitly considers the

differences between the real system and its model (CAMACHO; BORDONS, 2007; DAI et al.,

2012). According to Ogata e Yang (2002) a system designed through robust control theory has

the following characteristic:

• Robust stability - the control system stays stable despite the presence of disturbances.

• Robust performance - specified control responses are found when the system faces distur-

bances.
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The robust control theory can also be extended to predictive controllers, the RMPC strat-

egy performs an optimization considering the worst scenario for the intrinsic uncertainties of

the system. Among RMPC methods, Dai et al. (2012) highlights the min-max RMPC and the

LMI-based RMPC methods, the latter being the one studied in this dissertation. More specifi-

cally, this dissertation is based on the LMI-based constrained RMPC developed by Kothare et al.

(1996).

The method proposed by Kothare et al. (1996) is commonly used in MPC applications

due to its capability to treat model uncertainty. This strategy consists of a min-max optimization

problem, in which, at each sampling time, the predict future output of the system is calculated

based on the process model. These predictions are then used to minimize the cost function

J∞(k), as given by (3.3).

min
u(k)

max J∞(k) (3.3)

with,

J∞(k) =
∞

∑
i=0

[x(k+ i|k)TWx(k+ i|k)+u(k+ i|k)T Ru(k+ i|k)] (3.4)

where, W = W T ≥ 0 and R = RT ≥ 0 are symmetric weighting matrices, x(k+ i|k) and u(k+

i|k) are the prediction steps ahead of the states and control, respectively. This optimization

problem performs a search for the lowest control action considering the largest value of J∞(k)

(KOTHARE et al., 1996).

The mathematical approach used by Kothare et al. (1996) for solving this min-max prob-

lem consists of: firstly deriving an upper bound on the cost function; And then, minimizing this

bound with a constant state feedback control law as expressed by (3.5).

u(k+ i|k) = Fx(k+ i|k), i ≥ 0 (3.5)

Hence, the quadratic function V (x) = xT Px, with P > 0 is an upper bound on J∞(k) if:

V (x(k+ i+1|k))−V (x(k+ i|k))≤ (x(k+ i|k)TWx(k+ i|k)+u(k+ i|k)T Ru(k+ i|k)) (3.6)

Besides, for the function (3.4) to be finite and the system perform robustly the states

x(∞|k) must be null thus, V (x(∞|k)) = 0. Thence, summing (3.6) from i = 0 to i = ∞ (3.7) is

achieved.

V (x(k|k))≥ J∞ (3.7)



35

Therefore, considering (3.3):

max J∞(k)≤V (x(k|k)), (3.8)

which represents the upper bound for (3.4). Moreover, following (3.8) it can be stated that the

state feedback control law (3.5) assures the system stability at each sample time, considering

the Lyapunov matrix P (KOTHARE et al., 1996; SOUZA, 2015; COSTA, 2017).

3.3 Mathematical methods for RMPC

Some mathematical tools are necessary to well describe the LMI-based RMPC strategy,

which are addressed in this section. First, the LMIs concept is defined in Section 3.3.1 and

the Schur complement in Section 3.3.2. Moreover, Lyapunov stability criteria is discussed in

Section 3.3.3 and Section 3.3.4 introduces the polytopic uncertainties design.

3.3.1 Linear Matrix Inequalities

The Linear Matrix Inequality (LMI) technique was first addressed in the control theory

scenario over 100 years ago by Lyapunov. Since then, LMI methods have been developed and

their use to address control problems has become popular. Such popularity can be explain by

the possibility of using LMI methods to express robust control theory and solve optimization

problems in polynomial time (KOTHARE et al., 1996; CAPRON, 2014).

Boyd et al. (1994) define that for a variable x ∈R
m, a linear matrix inequality is express

as in (3.9).

F(x) = x1F1 + x2F2 + x3F3 + · · ·+ xmFm ≥−F0 (3.9)

or,

F(x) = F0 +
m

∑
i=1

xiFi ≥ 0 (3.10)

where Fi = FT
i ∈ R

nXn, i = 0, . . .m, are the given symmetric matrices. Furthermore, F(x) is

positive semi-definite, that is, uT F(x)u ≥ 0 for all u 6= 0 ∈ R. In short, a LMI can be defined as

an inequality with matrix and symmetric elements (AGUIRRE et al., 2007a).

Moreover, the LMI express in (3.9) is a convex constrain on x, i.e., its set solution given

by {x ∈ R
m|F(x) ≥ 0} is convex. This feature is very attractive, since allows the treatment of

robust control problems with convex optimization, which minimizes an linear objective function



36

of an given variable vector x ∈ R
m subject to a LMI constraint, such as the one given in (3.11)

(AGUIRRE et al., 2007a).

min
x

cT x

sub ject to : F(x)≥ 0
(3.11)

According to Camacho e Bordons (2007), besides the convex optimization approach the

LMI method can be used to solve problems as follows:

• Feasibility problem - finding the variables x1,x2, . . . ,xm that satisfy the inequality (3.9).

• Generalized eigenvalue minimization problem - calculating the minimum λ , satisfying

λA(x)−B(x)> 0, for A(x)> 0 and B(x)> 0.

These solving characteristics makes it possible to applied LMI in usual control the-

ory constraints, such as Lyapunov stability criteria and convex quadratic matrix inequalities

(BOYD et al., 1994). In addition, nowadays an optimization problem formulated in terms of

LMIs can be efficiently solved using algorithms known as LMIs solvers. Some of them are

highlighted by Costa (2017), such as the Yalmip solver developed by Johan Lofbeg, the Se-

DuMi solver developed by Jos Sturm and the LMISol solver developed by Oliveira, Farias e

Geromel in 1997.

3.3.2 Schur Complement

According to Costa (2017), Schur complement is a mathematical property commonly

used to convert a convex inequality into a LMI or vice-versa. This conversion is made as

explained as follows:

Given a matrix partitioned in four blocks as express in (3.12).

M(x) =




M1(x) M2(x)

MT
2 (x) M3(x)



 (3.12)

where, M1(x) = MT
1 (x), M2(x) = MT

2 (x) affinely depends on x and M3(x) = MT
3 (x) is a square

and non-singular sub-matrix. Then, the Schur complement of M3 in M1, symbolized as (M1/M3)

is defined as in (3.13).

(M1/M3) = M1(x)−MT
2 (x)M3(x)

−1M2(x), f or M3(x)≥ 0 (3.13)

In addition, if M1(x)≥ 0 it is also valid to affirm that,

(M/M1) = M3(x)−MT
2 (x)M1(x)

−1M2(x), f or M1(x)≥ 0 (3.14)
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3.3.3 Lyapunov stability criterion

The stability is one of the most important aspect of control theory, and must be satisfy

together with the controller performance to guarantee a control dynamic plausible to be applied

in real systems. Hence, considering a given linear system (3.15), the stability is achieved when

its derivative tends to zero, i.e., the system reach the stability when there is no more variation

in the control system (AGUIRRE et al., 2007a).

∆[x(t)] = Ax(t) (3.15)

where, x ∈ R
n, A ∈ R

nXn and ∆[.] is a special notation that represents ẋ(t) or x(k+1) to contin-

uous and discrete systems, respectively.

Thus, the equilibrium point xe for the system (3.15) is given when ∆[x(t)] ≡ 0, i.e., the

trajectory stays permanently in xe. Mathematically this indicates that (MOZELLI, 2008):

ẋ = 0, for continuous time systems

x(k+1) = x(k), for discrete time systems
(3.16)

Moreover, Kovacic e Bogdan (2006) states that a system stability can be classified as:

• Stable - when small changes in the initial conditions generate small changes in state tra-

jectory, thus:

∀t0, ∀ε > 0, ∃δ : ‖x(t0)− xe‖< δ ⇒ ‖x(t)− xe‖< ε, t ≥ t0

• Asymptotically Stable - when besides stable the system is attractive, i.e., trajectories that

start nearby the equilibrium point converge to it:

∀t0, ∃δ ∗ : ‖x(t0)− xe‖< δ ∗ ⇒ lim
t→∞

‖x(t)− xe‖= 0

• Globally Asymptotically Stable - when besides asymptotically stable δ ∗ is big enough.

Figure 8 illustrates a geometric projection for stable, asymptotically stable and unstable

systems, considering x ∈ R
2, a circle center in xe with the initial conditions (x(0)) restricted

within a radio ε and state trajectory confined in a radio δ .

Furthermore, according to Kovacic e Bogdan (2006) and Mozelli (2008), the stability

methods based on Lyapunov theory is very widespread in the control theory literature, espe-

cially for fuzzy and MPC control. This method provides a mathematical resource used to

search a equilibrium point for a system using a Lyapunov function for model representation,

e.g., the polynomial Lyapunov function, the nonquadratic Lyapunov function and the quadratic

Lyapunov function. Nevertheless, it is commonly used the quadratic function, which is detailed

as follows.
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Figure 8 – Projection for systems: (a) Stable, (b) Asymptotically Stable and (c) Unstable

xe

x(0)

(c) (b)

(a)

ε

δ

Source: Adapted from Mozelli (2008)

For the linear system (3.15) and considering a quadratic positive-definite function, the

Lyapunov stability criteria, is defined as shown in (3.17) (AGUIRRE et al., 2007a).

V (x(t)) = xT (t)Px(t)≥ 0, with P = PT > 0, P ∈ R
nxn (3.17)

Besides, the derivative of (3.17) in the continuous time is given in (3.18).

V̇ (x(t)) = xT (t)(AT P+PA)x(t) (3.18)

Since V (x(t)) is a positive-definite function, the equilibrium point is obtained if:

V̇ (x(t))≤ 0 (3.19)

or,

AT P+PA ≤ 0 (3.20)

Thus, for a continuous time system, Lyapunov theorem assures that the system is asymp-

totically stable if there is a matrix P = PT > 0 that satisfies the LMI in (3.20) (AGUIRRE et al.,

2007a).

Similarly, for a discrete time system the trajectory difference for the Lyapunov function

(3.17) is represented in (3.21).

∆V (x(t)) =V (x(t +1))−V (x(t)) = xT (t)(AT PA−P)x(t) (3.21)

Therefore, Aguirre et al. (2007a) affirms that the discrete system is asymptotically stable

if there is a matrix P = PT > 0 and the inequality express in (3.22) is satisfied.

AT PA−P ≤ 0 (3.22)
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Following what was exposed above, the Lyapunov stability criteria consists of an opti-

mization procedure that searches a matrix P=PT > 0 that satisfies a given inequality, as express

Aguirre et al. (2007a). Costa (2017) expands the Lyapunov stability casting the constraints us-

ing LMIs and Schur complement concepts:

Hence, for a discrete time system and considering a matrix Q = QT ≥ 0, where P = Q−1,

(3.22) can be rewritten as (3.23).

AT Q−1A−Q−1 ≤ 0 (3.23)

Using mathematical artifice and rearranging (3.23) in the Schur complement form, (3.24)

is obtained.



Q QAT

AQ Q



≥ 0, (3.24)

The expression (3.24) represents the LMI Lyapunov stability criteria, which can be de-

scribed by the optimization problem (3.25)






min tr(Q)

subject to :






Q QAT

AQ Q




≥ 0

(3.25)

The following section explains the exposed concepts considering the polytopic uncer-

tainty approach.

3.3.4 Polytopic uncertainty

When modelling real systems, it is common to appear differences between the model

and the physical system, such differences are called system uncertainties. Since a faithful repre-

sentation of the system is essential for its proper control, the treatment of uncertainties becomes

an important part of robust control theory (GAHINET et al., 1995).

As presented by Gahinet et al. (1995), usually these uncertainties appear when a simpler

system is used as an approximation of a more complex system. Other causes of uncertainty are

change in operating conditions, lack of knowledge of physical aspects of the system, varying

time parameters and poorly designed models.

In RMPC theory, exist different techniques to compose a system uncertainty, such as the

polytopic and the structured feedback uncertainty explored by Kothare et al. (1996). However,
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for the purpose of this study the uncertainty design is made through the polytopic method which

is described as follows.

Aguirre et al. (2007a) defines that a polytope is a convex hull with a finite number of

vertices, in which any set element can be obtained by the convex association of its vertices.

That feature, coupled with Lyapunov stability theory, makes it possible to verify a uncertain

system stability.

Mathematically, considering a system with n vertices as in (3.26):

∆[x(t)] = Ax(t), A ∈ P
∆
= {A|A =

n

∑
i=1

αiAi, αi ≥ 0,
n

∑
i=1

αi = 1} (3.26)

The quadratic stability is achieved if there is a matrix P = PT ≥ 0 that makes valid the

constrained (3.27)

AT P+PA ≤ 0, ∀A ∈ P, for continuous time systems

AT PA−P ≤ 0, ∀A ∈ P, for discrete time systems
(3.27)

with the Lyapunov matrix P simultaneously satisfying all systems within the polytope.

Furthermore, to verify a system stability, it is not necessary to evaluate all infinite

systems within the polytope, is sufficient to analyse its n vertices, as represented by (3.28)

(AGUIRRE et al., 2007a).

AT
i P+PAi ≤ 0, ∀i = 1,2, . . . ,n, for continuous time systems

AT
i PAi −P, ∀i = 1,2, . . . ,n, for discrete time systems

(3.28)

Kothare et al. (1996) used the polytope concept in order to represent the uncertainties of

a state space Linear Time-varying (LTV) discrete model, this representation is given in (3.29).






x(k+1) = A(k)x(k)+B(k)u(k)

y(k) =C(k)x(k)+D(k)u(k)

[A(k) B(k)] ∈ Ω

(3.29)

where, the set Ω is represented as a polytope:

Ω =Co[A1,B1], [A2,B2], . . . , [An,Bn] (3.30)

with Co representing a convex hull and its elements are given by the convex association of the

vertices, as (3.31) (KOTHARE et al., 1996).

[A,B] =
n

∑
i=1

λi [Ai,Bi] ,
n

∑
i=1

λi = 1,λi ≥ 0 (3.31)

Besides, an arbitrary geometric representation for the polytope (3.31) is displayed in

Figure 9.
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Figure 9 – Geometric projection for polytopic uncertainty
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Source: Adapted from Kothare et al. (1996)

3.4 Chapter’s Summary

This chapter presented the ground theory about model predictive control and distin-

guished the RMPC approach. These concepts are needed to design the proposed procedure.

Furthermore, some mathematical techniques for the LMI-based RMPC was defined, such as the

LMIs and Schur Complement concepts and their possibility in predictive control applications.

Besides, the significance of dealing with system stability was highlighted and the Lyapunov

stability criteria was discussed as a solution for these problems. Finally, the polytopic approach

to design model uncertainties was addressed.
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4 OUTPUT FEEDBACK FUZZY MODEL PREDICTIVE CONTROL

This chapter brings together the fuzzy and MPC theories, discussed in the previous

chapters, and proposes a new control strategy. The developed procedure is an output feedback

fuzzy model predictive control, and follows the methodology introduced by Wan e Kothare

(2002), in which the output feedback characteristic is achieved combining a state feedback

controller with a state observer, and then implementing a stability criteria for the controller-

observer structure.

Hence, this chapter addresses the methods used to established the proposed controller.

First, the state feedback control law and the state observer are introduced in Sections 4.1 and

4.2. Next, Section 4.3 explains the stability criteria for the controller-observer closed-loop

model, and the overall proposed procedures are resumed for the online and offline approach in

Sections 4.4 and 4.5. Finally, the main contributions of the chapter are listed in Section 4.6.

4.1 State Feedback Fuzzy MPC

This study is based on the state feedback FMPC controller developed by Li et al. (2000)

which is stated as a LMI optimization problem such as (3.11). Moreover, the system stability is

assured through Lyapuov functions considering a TS fuzzy model as (2.11) and the PDC control

law as (2.17), with the uncertainties designed using the polytopic method.

Hence, the FMPC proposed in this dissertation is designed following the Li et al. (2000)

procedure, however considering a state feedback strategy and presenting the cost function given

in (4.1).

min
u(k)

max J∞(k), (4.1)

where,

J∞(k) =
∞

∑
i=0

[X(k+ i)+U(k+ i)], (4.2)

with,

x(k+ i) = x(k+ i|k)TWx(k+ i|k),
U(k+ i) = u(k+ i|k)T Ru(k+ i|k),

(4.3)

x(k) ∈ R
nx is the state vector, u(k) ∈ R

nu is the input signal or control action and y(k) ∈ R
ny

represents the output signal. Furthermore, W =W T ≥ 0 and R = RT > 0 are weighting matrices,

which are used to set up the controller performance.
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Therefore, considering a TS fuzzy model as (2.11) and the PDC control law as (2.17), the

state feedback FMPC strategy that solves the optimization problem (4.1) is given in Theorem 1.

Theorem 1 (Constrained Fuzzy Robust Model Predictive Control for TS fuzzy systems).

min
γ, Q, Yi

γ (4.4)

Subject to the constraints given in (4.5)-(4.8).



1 x(k|k)

x(k|k)T Q



≥ 0 (4.5)











Q ∗ ∗ ∗
AiQ+BiYi Q ∗ ∗

W
1
2 Q 0 γI ∗

R
1
2Yi 0 0 γI











> 0 (4.6)














4Q ∗ ∗ ∗ ∗
S Q ∗ ∗ ∗

2W
1
2 Q 0 γI ∗ ∗

√
2R

1
2Yi 0 0 γI ∗

√
2R

1
2Y j 0 0 0 γI














> 0 (4.7)




Q ∗
Yi u2

maxI



> 0 (4.8)

where, S = AiQ+BiY j +A jQ+B jYi.

Thus, the solution to this optimization problem results in obtaining the gain for the

FMPC through the expression (4.9).

Fj = Y jQ
−1 (4.9)

Proof. Following the procedure proven in Section 3.2, for the min-max problem given in (4.1),

the Lyapunov function V (x) = xT (k)Px(k) is an upper bound of J∞(k) if,

V (x(k|k))≥ J∞ (4.10)
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Therefore, the solution of (4.1) becomes sub-optimal, because the minimization is made

considering the function V (x(k|k)) instead of the cost function J∞. Thus, the optimization prob-

lem can be written as (4.11) (LI et al., 2000).

minimize γ

subject to J∞ < xT (k|k)PxT (k|k)< γ
(4.11)

Taking Q = γP−1 and applying the Schur complement procedure,

minimize γ

subject to




1 x(k|k)

x(k|k)T Q



> 0
(4.12)

Furthermore, for the TS fuzzy model and the PDC control law given in (2.11) and (2.17)

the closed-loop system can be described as (4.13) or (4.14).

x(k+1) =
r

∑
i=1

r

∑
j=1

hih j(Ai +BiFj)x(k) (4.13)

x(k+1) =
r

∑
i=1

h2
i Giix(k)+2

r

∑
i=1

r

∑
j=i+1

hih j

(
Gi j +G ji

2

)

x(k) (4.14)

with,

Gi j = Ai +BiFj (4.15)

Thus, following the procedure developed in Li et al. (2000):

∆V (x(k)) = V (x(k+1))−V (x(k))

=
1
4

r

∑
i=1

r

∑
j=1

r

∑
k=1

r

∑
l=1

hih jhkhlx
T (k)[(Gi j +G ji)

T P(Gkl +Glk)−4P]x(k)
(4.16)

Since, AT
j RAi +AT

i RA j ≤ AT
i RAi +AT

j RA j, (4.16) can be written as (4.17).

∆V (x(k)) ≤ 1
4

r

∑
i=1

r

∑
j=1

hih jx
T (k)[(Gi j +G ji)

T P(Gi j +G ji)−4P]x(k)

=
r

∑
i=1

h2
i xT (k)(GT

ii PGii −P)x(k)+

2
L

∑
i=1

L

∑
j=i+1

hih jx
T (k)

[
(Gi j +G ji)

T

2
P
(Gi j +G ji)

T

2
−P

]

x(k)

(4.17)

Hence, if (4.18) and (4.19) hold true:

GT
ii PGii −P+W +FT

i RFi < 0 (4.18)
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(Gi j +G ji)

2
P
(Gi j +G ji)

2
−P+W +

FT
i RFj +FT

j RFi

2
(4.19)

then, (4.17) becomes,

∆V (x(k)) ≤
r

∑
i=1

h2
i xT (k)(−W −FT

i RFi)x(k)+

2
L

∑
i=1

L

∑
j=i+1

hih jx
T (k)

[

−W −
FT

i RFj +FT
j RFi

2

]

x(k)

(4.20)

Following Li et al. (2000), the term xT (k)Wx(k)+uT (k)Ru(k) can be rewritten as (4.21).

xT (k)

[
r

∑
i=1

h2
i xT (k)(W +FT

i RFi)+2
r

∑
i=1

r

∑
j=i+1

hih j

(

W +
FT

i RFj +FT
j RFi

2

)]

x(k) (4.21)

Therefore,

∆V (x(k))<−xT (k)Wx(k)−uT (k)Ru(k) (4.22)

Which confirms that the Lyapunov function V (x) is an upper bound of the cost function

J∞.

Moreover, the conversion to LMI format of the conditions given in (4.18) and (4.19) are

made as follows:

Taking (4.18) and considering P = γQ−1:

(Ai +BiFi)
T γQ−1(Ai +BiFi)− γQ−1 +W +FT

i RFi < 0 (4.23)

Defining Yi = FiQ, 4.23 can be described as .

(AiQ+BiYi)
T γQ−1(AiQ+BiFi)− γQ+QWQ+Y T

i RYi < 0 (4.24)

Which is equivalent to (4.25), applying Schur procedure.










Q ∗ ∗ ∗
AiQ+BiYi Q ∗ ∗

W
1
2 Q 0 γI ∗

R
1
2Yi 0 0 γI











> 0 (4.25)

Analogously, following Li et al. (2000), considering P = γQ−1 and Yi = FiQ (4.19) is

given by (4.26)

4Q− (AiQ+BiY j +A jQ+B jYi)
T Q−1(AiQ+BiY j +A jQ+B jYi)−4γ−1QWQ−

2γ−1Y T
i RYi −2γ−1Y T

j RY j > 0
(4.26)
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Besides, applying the Schur complement (4.26) is given in (4.27).













4Q ∗ ∗ ∗ ∗
S Q ∗ ∗ ∗

2W
1
2 Q 0 γI ∗ ∗

√
2R

1
2Yi 0 0 γI ∗

√
2R

1
2Y j 0 0 0 γI














≥ 0 (4.27)

The LMIs previously proven assure the stability of the TS fuzzy system. In addition,

input constraints can be added to the system. Hence, following Li et al. (2000) considering an

input constraint represented by ‖u(k)‖2 ≤ umax,

max
k≥0

‖u(k)‖2
2 ≤ max

zT Q−1,z<1

∥
∥
∥
∥
∥

r

∑
i=1

hiYiQ
−1z

∥
∥
∥
∥
∥

2

2

≤ max
i

max
zT Q−1,z<1

∥
∥
∥
∥
∥

r

∑
i=1

YiQ
−1z

∥
∥
∥
∥
∥

2

2

≤ λmax(Q
−0.5Y T

i YiQ
−0.5)

(4.28)

Thus, using Schur complement the imposed input constraint is:



Q ∗
Yi u2

maxI



> 0 (4.29)

4.2 Offline fuzzy state observer

The next step in the controller development is the design of a state observer, this ap-

proach is often applied in systems where it is not possible to measure all the states of a model

(PARK et al., 2011). Consequently, Feng (2018) stated that in face of this impossibility it is

necessary to design controls with output feedback, such as the observer-based method.

The state observer has the function of estimate the states of a system, thus circumventing

the difficulty of measuring all states of a model. For the purpose of this study, an offline fuzzy

state observer is utilized based on the developments of Feng (2018) and Tanaka e Wang (2001).

As the observer intends to minimize the errors between the estimated and the actual state

variables, the proposition given in (4.30) must be ensured (TANAKA; WANG, 2001).

x(t)− x̂(t)→ 0,as t → ∞ (4.30)
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with, x̂(t) as the estimated state vector.

Considering a system designed with a fuzzy controller associated with a fuzzy state ob-

server and for a TS fuzzy model, the estimated system is represented in (4.31) (TANAKA; WANG,

2001).

x̂(k+1) =
r

∑
j=1

h j(z(k))(A jx̂(k)+B ju(k)+L j(ŷ(t)− y(t))

ŷ(k) =
r

∑
j=1

h j(z(k))(C jx̂(k)+D ju(k)
(4.31)

where, the weight h j(z(k)) is the one obtained by the TS fuzzy model presented in (2.12), and

L j is the observer gain for each fuzzy rule.

Moreover, for an observer-based design the PDC control law given in (2.17) becomes:

u(k) =−
(

r

∑
j=1

h j(z(k))Fj

)

x̂(k) (4.32)

Therefore, the fuzzy observer error can be expressed as follows,

e(k+1) =
r

∑
i=1

r

∑
j=1

hi(z(k))h j(z(k))
(
Ai −FiC j

)
e(k) (4.33)

Hence, following the offline state observer proposed by Feng (2018) Theorem 2 is de-

fined.

Theorem 2 (Offline fuzzy state observer (FENG, 2018)). The fuzzy observer gains L j are ob-

tained if there is a positive define matrix P, and a set of matrices Ri, that satisfy the inequality

given in (4.34):



−P AT

i P+CT
j RT

i

PAi +RiC j −P



< 0, (4.34)

In this way, if this optimization problem is solved, the gain of the observer that guaran-

tees the stabilization of x̂(k) is given by (4.35).

L j = P−1R j (4.35)

Proof. Taking Gi j = Ai+FiC j, the global stability of the error (4.33) is assured if the following

LMI is satisfied.

Gi jPGi j −P < 0 (4.36)
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Using the Schur complement and replacing Gi j = Ai +FiC j is express as (4.37).



−P AT

i P+CT
j FT

i P

PAi +PFiC j −P



< 0, (4.37)

Defining Ri = PFi,



−P AT

i P+CT
j RT

i

PAi +RiC j −P



< 0, (4.38)

4.3 Stability criteria

The observer-based output feedback is characterized by a separated design of a state

feedback controller and an estimator. Furthermore, following Kim et al. (2006) this approach

often leads to difficulties in guaranteeing the overall system stability. In view of this problem,

Wan e Kothare (2002) proposed a methodology to ensure the robust stability of the association

controller-observer, which consists of a criteria that evaluates the closed-loop system feasibility.

Inspired by the procedure developed by Wan e Kothare (2002), this dissertation proposes

a new stability criteria to guarantee the closed-loop stability of the proposed observer-based

output feedback FMPC. In contrast with the work developed by Wan e Kothare (2002), this

study considers a T-S fuzzy model, a fuzzy MPC controller and an offline fuzzy state observer.

In addition, the stability criteria are designed considering an online and offline approach of the

controller, which are described in subsections 4.3.1 and 4.3.2, respectively.

4.3.1 Stability criteria design for online approach

Considering an online procedure of the FMPC controller, the fuzzy gains Fj(k) (4.9)

and state matrices A(k),B(k),C(k) and D(k) are determined for each iteration. Moreover, the

observer fuzzy gains are obtained offline and are given by L j (4.35). Thus, the closed-loop

augmented system for the controller-observer union is given by (4.39).

X (k+1) = Apoly(k)X (k) (4.39)

where, X =




x

x̂



 and Apoly(k) =




A(k) B(k)Fj(k)

L jC(k) A(k)+B(k)−L jC(k)





The structured defined in (4.39) aims to assure the closed-loop stability criteria stated in

Theorem 3.
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Theorem 3 (Robust stability criteria for online observer-based output feedback for T-S Fuzzy

MPC). The augmented system (4.39) is robustly stable if exists the matrix Q > 0, with compat-

ible dimension, such that for all state matrices and fuzzy gains the LMI given in (4.40) holds

true.




Q QApoly(k)

T

QApoly(k) Q



> 0 (4.40)

Proof. If (4.40) is satisfied, at each sample time, for all state matrices and fuzzy gains, then

taking P = Q−1 and using Schur complement method:

P −Apoly(k)
T
PApoly(k)> 0 (4.41)

Therefore, assuring that the Lyapunov quadratic function X T PX is monotonically

decreasing, i.e., the system is asymptotically stable.

4.3.2 Stability criteria design for offline approach

For the offline method, the FMPC controller presents a fixed set of fuzzy gains Fj as

well as the observer gains L j and state matrices A(k),B(k),C(k) and D(k) are determined for

each sample time. In that sense, the closed-loop augmented system considering the controller-

observer interaction is given by (4.42).

X (k+1) = Apoly(k)X (k) (4.42)

with,

X =




x

x̂



 (4.43)

and,

Apoly(k) =




A(k) B(k)Fj

L jC(k) A(k)+B(k)−L jC(k)



 (4.44)

Thus, Theorem 4 explains the closed-loop stability for the offline approach.

Theorem 4 (Robust stability criteria for offline observer-based output feedback for T-S Fuzzy

MPC). The augmented system (4.42) is robustly stable if exists the matrix Q > 0, with compat-

ible dimension, such that for all state matrices, controller fuzzy gains set and observer fuzzy
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gains,




Q QA T

poly,i, j

QApoly,i, j Q



> 0 (4.45)

where, Apoly,i, j =




Ai BiFj

L j Ai +Bi −L jCi



, i = 1, ...,N and j = 1, ...,r.

Proof. If (4.45) is satisfied for all the polytopic vertices from the set Ω of the system and all

fuzzy gains from the sets Fj and L j, then for an arbitrary set [A(k) B(k)] ∈ Ω with the controller

and observer fuzzy gains Fj(k) e L j(k),




Q QApoly(k)

T

QApoly(k) Q



> 0 (4.46)

Hence, defining P = Q−1 and using Schur complement, it is possible to affirm that,

P −Apoly(k)
T
PApoly(k)> 0 (4.47)

Thus, as for Theorem 3, the quadratic Lyapunov function X T PX is invariably de-

creasing, i.e., the system is asymptotically stable.

Defining the stability criteria for the controller-observer union is the last step of the

proposed controller methodology. Thus, Sections 4.4 and 4.5 resumes the general proposed

procedure for the online and offline approaches, respectively.

4.4 Observer-based output feedback FMPC methodology

For the online procedure, the controller optimization problem defined in (4.4) is solved

at each sample time, resulting in a fuzzy gains set Fi(k). However, the observer gains are

predetermined since its optimization procedure is made offline. Moreover, the stability criteria

is implemented as the FMPC, i.e., at each sample time the criteria is applied. Thus, considering

the above, the Theorem 5 resumes the online procedure for the proposed control system.

Theorem 5 (Online Observer-based Output Feedback TS FMPC with guaranteed closed-loop

stability). For a T-S fuzzy model (2.10), considering the PDC control law (2.17) with the state

feedback fuzzy gains given in (4.9), and the state observer fuzzy gains (4.35), the observer-based
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output feedback T-S FMPC is asymptotically stable if the minimization problem expressed in

(4.48) is solved at each sample time.

min
γ,Y j,Q

γ, (4.48)

subject to (4.5)-(4.34), (4.39) and (4.40).

4.5 Offline Observer-based output feedback FMPC methodology

The offline methodology is proposed as a way to reduce the computational effort that

makes the online implementation more time consuming. For this purpose, unlike the online pro-

cedure, the offline methodology applies the FMPC controller and the stability criteria procedure

for a set of points, which results in a predefined set of fuzzy controller gains Fj, as well as the

observer fuzzy gains L j. A fixed gain is chosen among the fuzzy gains set and then is applied

to the iterated procedure.

The development of an offline approach for MPC controllers using LMIs was made by

Wan e Kothare (2003), their work is based on the the asymptotically stable invariant ellipsoid

concept, which are explained and detailed in Subsection 4.5.1.

4.5.1 Stability Ellipsoids

The invariant ellipsoid concept is used in offline MPC methods in order to guarantee the

system stability. Following Wan e Kothare (2002), this is achieved by limiting the system states

forming asymptotically stable invariant ellipsoids. Souza (2015) states that the system states

became limited by an ellipsoid when submitted to the constraint given (4.5). Furthermore,

the system stability is assured through the asymptotically stable invariant ellipsoid defined as

follows.

Definition 1 (Asymptotically stable invariant ellipsoid (WAN; KOTHARE, 2003)). Consider-

ing a discrete system x(k+1) = f (x(k)), a subset E =
{

x ∈ Rnx |xT Q−1x ≤ 1
}

of the state space

Rnx is an asymptotically stable invariant ellipsoid, if for x(k1) ∈ E , x(k) ∈ E and x(k)→ 0 as

k → ∞, with k ≥ ki.

Moreover, considering a model as (2.10) with a control law as (2.17) which solves the

optimization problem given in (4.4) for a state x0. Then the subset E =
{

x ∈ Rnx |xT Q−1x ≤ 1
}

of the state space Rnx is an asymptotically stable invariant.
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Proof. From Wan e Kothare (2003) it can be seen that: Since the only state dependent LMI

from (4.4) is (4.5), which is satisfied for all states inside de ellipsoid. Then, the minimization

considering the state x0 results in feasible matrices γ,Y j,Q for any other state in E .

Therefore, applying the control law u(k) =−
(

r

∑
j=1

h j(z(k))Y jQ
−1

)

x(k) to a state x̃(k)∈

E 6= x0 6= 0, which satisfy (4.6)-(4.8),

x̃(k+ i+1)T Q−1x̃(k+ i+1)< x̃(k+ i)T Q−1x̃(k+ i), i ≥ 0 (4.49)

Hence, proving that x̃(k+ i) ∈ E and x̃(k+ i)→ 0 as k → ∞.

The invariant ellipsoids can be interpreted as a geometric bound for the robust system

stability, as each matrix Q−1 can be designed as an ellipse or ellipsoid (according to its dimen-

sions). A 2-dimensions representation of an arbitrary ellipsoid is illustrated in Figure 10.

Figure 10 – 2-dimensions arbitrary ellipsoid

E

x(k+ i|k)

Source: Adapted from Kothare et al. (1996)

As stated by Costa (2017), physically the invariant ellipsoid stability can read as: a BIBO

stable response stays within the ellipsoid boundaries and this response tends to zero on steady

state, considering the Finite Impulse Response (FIR), for a given initial conditions. Moreover

if the states are limited by an ellipsoid, the optimization problem (4.4) establishes a control law

which assures that the future states are also limited by an ellipsoid, with a smaller ratio.

Thus, considering the concepts introduced above, the offline procedure for the proposed

control system is resumed in Theorem 6.

Theorem 6 (Offline Observer-based Output Feedback TS FMPC with guaranteed closed-loop

stability). For an offline system, given an initial feasible condition x2, a sequence of minimizers

(γ,Q,Yi,Y j,Q) is calculated following (4.4)-(4.9), (4.34) and (4.45). Take k:=1
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1. Compute the minimizers (γk,Qk,Yik,Y jk,Qk) with the additional constraints Qk−1 > Qk

and and keep Q−1
k ,Yik,Y jk,Fik and Fjk in a lookup table;

2. If k < N, choose the state xk+1 satisfying ‖xk+1‖Q−1 ≤ 1. Take k:=k+1 and go to step one.

Lookup table: given the initial condition ‖x(0)‖Q−1 ≤ 1 take the state x(k) for the respec-

tive time k. Plot the search around Q−1 in the lookup table to find the biggest k (or the

smallest ellipsoid).

3. Apply the control law (4.32).

4.6 Chapter’s Summary

This chapter described the core of this dissertation, defining the main methodologies

used to implement the proposed output feedback FMPC approach. Initially, the observer-based

output feedback method from Wan e Kothare (2002) was introduced as a three step mecha-

nism, first a novel state-feedback controller was proved based on the work developed by Li et al.

(2000). Next, the fuzzy state observer proposed by Feng (2018) was discussed, and finally new

stability criteria for the controller-observer augmented system was proposed. Furthermore, two

overall procedures was presented in the form of theorems for an online and an offline approach

of the proposed control method.
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5 NUMERICAL EXAMPLE

This chapter presents an application of the proposed control strategy described in the

above chapters. This application involves the benchmark model proposed by Park et al. (2011)

designed through the TS fuzzy methodology (2.10)-(2.15) and adding the proposed observer-

based output feedback FMPC, considering the online and offline approaches according to The-

orems 5 and 6.

Hence, this chapter is organized as follows: first, Section 5.1 describes the process plant

and develops its TS fuzzy model, then Section 5.2 introduces the control configuration including

the block diagram for the proposed method. Moreover, Section 5.3 resumes the main results

for the online and offline applications, and finally Section 5.4 discusses the contributions of the

chapter.

5.1 Model description

The plant used is the numerical example described in the work of Park et al. (2011) as a

Linear Parameter Varying (LPV) system, with its state-space equations described in (5.1).

x(k+1) = A(α(k))x(k)+B(β (k))u(k),

y(k) =Cx(k),
(5.1)

where A(α(k)), B(β (k)) and C are the matrices (5.2), (5.3) and (5.4), respectively.

A(α(k)) =




0.872 −0.0623α(k)

0.0935 0.997



 (5.2)

B(β (k)) = β (k)




0.0935

0.00478



 (5.3)

C =
[

0.333 −1
]

(5.4)

The parameters α and β are in the ranges:

α(k) ∈ [1, 5] and β (k) ∈ [0.1, 1]. (5.5)

In order to implement the proposed control approach, this LPV system is modeled using

the TS fuzzy approach, as in (2.10). Thus, considering that the state matrices are functions of
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the parameters α and β , two random values for each of these parameters are defined at each

sampling time, being α1, α2, β1 and β2. Therefore, following the limits given in (5.5), the

parameters α1, α2, β1 and β2 vary inside the regions:

α1(k) ∈ [1, 2.5], β1(k) ∈ [0.1, 0.55].

α2(k) ∈ [2.5, 5], β2(k) ∈ [0.55, 1].
(5.6)

Hence, the state-space model given in (5.1) can be written as a TS fuzzy model with two

if-then rules, as expressed by (5.7) and (5.8).

Rule 1 : IF x1(k) = µ1

T HEN :







x(k+1) = A(α1(k))x(k)+B(β1(k))u(k),

y(k) =Cx(k).

(5.7)

Rule 2 : IF x1(k) = µ2

T HEN :







x(k+1) = A(α2(k))x(k)+B(β2(k))u(k),

y(k) =Cx(k).

(5.8)

Note that the system states are used as premise variables for the design of the member-

ship functions, which are chosen as the nonlinear membership functions µ1 and µ2, given in

(5.9), based on the study developed by Xia et al. (2010).

µ1(x2(k)) =
1+ sin(x2)

2
,

µ2(x2(k)) =
1

1+ ex2
.

(5.9)

5.2 Controller design

The proposed controller procedure for the numerical example is resumed in the block

diagram illustrated by Figure 11. The system states are given by:

x(k+1) = Az(k)x(k)+Bz(k)u(k) (5.10)

Also, the estimated states are given as,

x̂(k+1) = Az(k)x̂(k)+Bz(k)u(k)+Lz(ŷ(k)− (y(k))) (5.11)
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with, Az(k) and Bz(k) obtained by the TS fuzzy design of A(αi(k)) and B(βi(k)), and Lz follows

the same procedure for the gains L j.

Besides, using PDC principle, the control law is given in 5.12,

u(k) =−Fz(k)x̂(k) (5.12)

where Fz(k) is obtained by the TS fuzzy association of the gains Fj.

Considering that the output and the estimated output are,

y(k) =Cx(k)

ŷ(k) =Cx̂(k)
(5.13)

the controller-observer state-equations for this application are resumed in (5.14).



x(k+1)

x̂(k+1)



=




Az(k) −Bz(k)Fz(k)

−LzC Az(k)−Bz(k)Fz(k)+LzC








x(k)

x̂(k)



 (5.14)

Figure 11 – Block Diagram for the numerical example

Fz
TS Fuzzy

inference system

x(k+1) = Az(k)x(k)+Bz(k)u(k)
y(k) =Cx(k)

x̂(k+1) = Az(k)x̂(k)+Bz(k)u(k)+Lp(ŷ(k)− y(k))
ŷ(k) =Cx̂(k)

TS Fuzzy Model

Observer design

z(k)

x̂(k)

u(k) y(k)

Theorem 5 (online procedure) or 6 (offline procedure)

Source: The Author (2020)

Furthermore, the controller is defined using the weighting matrices from (4.6)-(4.7),

which are designed as (5.15).

W =




1 0

0 1



 and R = 1
(5.15)
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Also, an input constraint is added as |u(k)|< 1, k ≥ 0, for the initial states x = [−1.5 −
0.2]T and x̂ = [−0.5 1]T . Considering these parameters and the process model, the obtained

fuzzy state observer gains are given in (5.16).

L1 = [−0.1831 0.9231]T

L2 = [−0.4156 −0.9210]T
(5.16)

5.3 Simulation results

This section discusses the results obtained from the computational simulation of the

proposed output feedback FMPC applied to the model given in Section 5.1. This simulation

adopts the toolboxes YALMIP and the SEDUMI solver to implement the LMIs. Moreover, the

analysis is divided into online and offline approaches, which are presented in subsections 5.3.1

and 5.3.2.

5.3.1 Online approach for numerical example

The performance analysis of the proposed output feedback FMPC is made in comparison

with the output feedback MPC from Kim e Lee (2017) and Rego (2019), the latter being an

improvement on the former. The responses over time, poles allocation and performance indexes

are used to evaluate this comparison, which are illustrated and discussed as follows.

Considering the exposed in Section 5.1, the random variation for the parameters α and

β are illustrated in Figures 12 and 13.

Figure 12 – Random variation for the parameter α
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0 10 20 30 40 50 60

1

1.5

2

2.5

Time step

α
1

(b) α2

0 10 20 30 40 50 60

2.5

3

3.5

4

4.5

5

Time step

α
2

Source: The Author (2020)
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Figure 13 – Random variation for the parameter β
(a) β1
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In view of this, Figure 14 displays the system states time response, considering the com-

parison between the proposed controller and the controllers from Rego (2019) and Kim e Lee

(2017). From this figure, it can be noted that the controllers are able to stabilize the system over

time. However, the proposed output feedback FMPC presents less oscillations, a lower over-

shoot and a a faster settling time in contrast with Rego (2019) and Kim e Lee (2017). Moreover,

Figure 15 prints the time response for the real and estimated states considering the proposed

output feedback FMPC approach. It is possible to highlight the proper functioning of the fuzzy

state observer, since the estimated states x̂(k) converge to real system states x(k) over time.

Figure 14 – System states time response.
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Figure 15 – Real × Estimated states for the proposed controller
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Besides, the output responses for the control systems are represented in Figure 16. Note

that, as with system states, the output response is more stable and stabilize faster for the pro-

posed controller. The overshoot from the curves of Rego (2019) and Kim e Lee (2017) are

more than twice the proposed controller overshoot, and the proposed procedure does not cause

undershoot, unlike Rego (2019) and Kim e Lee (2017). Which confirms the superiority of the

proposed output feedback FMPC.

The control efforts to reach those output curves are displayed in Figure 17. From this

figure, it can be seen that all studied techniques satisfy the imposed input constraint. In addition,

the control signal for the proposed controller has a faster and less oscillating stabilization than

the one from Kim e Lee (2017). However, the control signal from Rego (2019) presents a better

performance. Considering the exposed control effort, the time response for the objective func-

tion γ(k), given in (4.4) is exhibited in Figure 18, showing a comparison between the studied

controllers. It is possible to perceive through this figure that the proposed controller and the

one from Rego (2019) acts similarly in therms of γ(k). Nevertheless, the output feedback MPC

from Kim e Lee (2017) presents a slower stabilization, and a much higher maximum value for

this variable.

Furthermore, the presented control laws are analyzed through the allocation of the sys-

tem poles in the unit circle. This analysis makes it possible to conclude whether or not the
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Figure 16 – Output signal y(k).
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Figure 17 – Control signal u(k).
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controlled system is stable, considering if all poles are within the unit circle. The obtained

poles from the controllers are shown in Figure 19, where Figure 19a illustrates the complete

unit circle and Figure 19b displays an approximated view. As it can be seen, for all studied con-

trollers the poles are placed within the unit circle, i.e. the controllers present a stable response.
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Figure 18 – Objective function.
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Nonetheless, some poles from Rego (2019) and Kim e Lee (2017) controllers are closer to the

unit circle extreme than the poles from the proposed output feedback FMPC method.

Figure 19 – Poles allocation in the z-plane
(a) Poles allocation
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Considering all the time responses for the parameters previously analyzed, Table 1 re-

sumed the variation intervals for the proposed procedure in comparison with Rego (2019) and

Kim e Lee (2017), showing superior results by the methodology proposed in this dissertation



62

Table 1 – Variation intervals for the studied parameters
Proposed Rego (2019) Kim e Lee (2017)

x1 [−1.5, 0.158] [−1.5, 0.7129] [−1.5, 0.5144]
x2 [−0.4361, 0.01271] [−0.7226, 0.1762] [−0.7124, 0.05577]
y [−1.109, 0.2979] [−0.2995, 0.8106] [−0.2995, 0.7871]
u [−0.1492, 1] [−0.03096, 1] [−0.4824, 1]
γ [0, 2.641] [0, 2.254] [0, 24.24]

Poles Re(z) [0.8011, 0.9136] [0.9346, 0.9608] [0.6863, 0.9385]
Poles Im(z) [−0.1126, 0.1126] [−0.1679, 0.1679] [−0.1083, 0.1083]

Source: The Author (2020)

Ultimately, the performance of the studied controllers are evaluated using some per-

formance indices, which are Integrated Absolute Error (IAE), Integral of Squared Error (ISE),

Integral of Time-weighted Absolute Error (ITAE), Integral of Time-weighted Squared Error (ITSE)

and the cost function J∞, given in (5.17)-(5.20) and (4.2), respectively. The results are resumed

in Table 2, in which is possible to affirm that the proposed controller has a better performance

in terms of all evaluated metrics.

IAE =
Nk

∑
i=1

(re fi − yi) (5.17)

ISE =
Nk

∑
i=1

(re fi − yi)
2 (5.18)

ITAE =
Nk

∑
i=1

i(re fi − yi) (5.19)

IT SE =
Nk

∑
i=1

i(re fi − yi)
2 (5.20)

where, Nk is the last simulation point, re fi represents the desired reference and yi is the output

response.
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Table 2 – Performance indices for the studied controllers
Proposed Rego (2019) Kim e Lee (2017)

IAE 5.9098 15.1623 14.9418
ISE 2.2159 7.7246 8.0794

ITAE 62.2817 258.3642 227.9877
ITSE 9.6937 96.5466 100.4144

J∞ 8.3458 18.1292 19.6421

Source: The Author (2020)

5.3.2 Offline approach for numerical example

The offline approach for the output feedback FMPC are obtained using the stability

invariant ellipsoid concept, as discussed in Section 4.5. Therefore, the results analysis is made

in term of this ellipsoids, the obtained time response, closed-loop poles stability in z-map and

performances indexes, in comparison with the proposed online procedure.

Thus, following the steps from Theorem 6, the stability invariant ellipsoids are geometric

representation of the matrices Q, which are obtained from (4.5)-(4.8) and store in a lookup table,

considering a set of ten points xset obtained from the system states. Besides the matrices Q, the

lookup table also stores the fuzzy gains for the proposed controller.

Therefore, applying the offline proposed procedure for the TS model described in Sec-

tion 5.1, the set of matrices Qk, with k = 1, 2, ...,10 are obtained. Which are illustrated in Figure

20, and their respective gains Fjk and points xset(k) are listed in Table 3. Furthermore, Figure

21 presents the geometric projection of those ellipsoids over time and in contrast with xset . The

analysis of Figures 20 and 21 shows that the size of the ellipsoids decreases as i reaches 20, thus

inferring the tendency to stabilize the ellipsoids.

According to Costa (2017), the stability of the system for the offline stability invariant

ellipsoids approach is also confirmed if the impulse response for the nominal operating point

remains within the limits of the ellipsoid, and if that response tends to zero in a steady state.

Moreover, considering the already proven stability tendency of the ellipsoid Qk, the closed loop

system is stable for any value of k. Thus, the choice of the implemented gain is up to the

controller designer. Choosing k = 10, the geometric projection of Q10 and the impulse response

are illustrated in Figure 22. It is possible to notice that the impulse response is restricted inside

the limits of the ellipsoid. In addition, the impulse response converge to the origin, thus it can

be concluded that the proposed controller guarantees the system stability.
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Figure 20 – Stability invariant ellipsoids Qk.

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

State 1

S
ta

te
2

Source: The Author (2020)

Table 3 – Set of points and fuzzy gains for the offline procedure
k xset F1 F2

1 -1.5 [-0.0436 -0.0066] [-0.1441 0.0813]
2 -1.2955 [-0.0535 0.0011] [-0.1530 0.0677]
3 -1.1086 [-0.0621 0.0076] [-0.1591 0.0583]
4 -0.9380 [-0.0703 0.0140] [-0.1667 0.0467]
5 -0.7829 [-0.0740 0.0168] [-0.1747 0.0344]
6 -0.6423 [-0.0795 0.0210] [-0.1836 0.0207]
7 -0.5153 [-0.0825 0.0234] [-0.1898 0.0113]
8 -0.4009 [-0.0845 0.0249] [-0.1940 0.0048]
9 -0.2983 [-0.0854 0.0255] [-0.1972 -0.0001]
10 -0.2067 [-0.0841 0.0245] [-0.2000 -0.0044]

Source: The Author (2020)

Furthermore, applying the chosen gain for k = 10, the system time responses are then

obtained. Which are illustrated in Figures 23-26 in comparison with the proposed online output

feedback FMPC approach. From these figures, it is possible to affirm the ability of the offline

method to stabilize the system over time, with a performance very similar to that of the online

approach, for all evaluated parameters. The offline procedure was also able to conduct the

imposed input constraint and to perform stable considering the z-plane poles allocation. The

similarity of both methods are also validated by the performance indices presented in Section

5.3.1, which are given in Table 4.
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Figure 21 – Ellipsoids over time × xset
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Figure 22 – Invariant ellipsoid × impulse response.
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Table 4 – Online × Offline Performance indices
Online Offline

IAE 5.9416 6.1558
ISE 2.2091 2.2192

ITAE 63.5866 74.2704
ITSE 9.7335 10.0279

J∞ 8.2727 8.1271

Source: The Author (2020)
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Figure 23 – Online × Offline states.
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Figure 24 – Online × Offline estimated states.
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The aforementioned obtained results make explicit the viability of applying an offline

output feedback FMPC for the studied model. Furthermore, the offline approach also presents

an optimization in the implementation time (12.6527s) of more than half of the online appli-

cation (27.4502s). Thus, overcoming common problems in applications with advanced control
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Figure 25 – Online × Offline output and control signals.
(a) Output Signal y(k)
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Figure 26 – Online × Offline closed-loop poles in the z-plane
(a) Poles allocation
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techniques: the high computational cost and time demand.

5.4 Chapter’s Summary

The application of the proposed method to a numerical example was displayed in this

chapter, aiming to investigate the viability of the studied controller and allowing the follow-up

of the dissertation. Hence, a LTV state-space model was designed using the TS fuzzy method-

ology and then was applied to a control system designed in the block diagram from Figure 11.

The computational obtained results was discussed in terms of the online and offline procedure,

considering time response, poles allocation, performance indexes and stability invariant ellip-
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soid, all of these parameters proved the good performance of this study. It is also worth noticing

the practical applicability for the offline approach, which solves a commonly found problem for

advance control real applications.



69

6 3SSC BOOST CONVERTER

The good performance presented by the proposed output feedback FMPC for both online

and offline approach in Chapter 5, allowed the progress of this study for an application in a

power electronics structure, which is the main objective of this dissertation. In this scenario,

the presented chapter presents the application of the proposed control procedures to a power

converter with a three states switching cell (3SSC).

Hence, this chapter is composed by the following sections: Section 6.1 describes the

model for the 3SSC converter, Section 6.2 presents the configuration of the proposed procedure

including the control system block diagram. Next, Section 6.3 illustrates and discusses the main

obtained results, and finally Section 6.4 brings the main contributions of the chapter.

6.1 3SSC Boost Converter

The application proposed in this chapter is based on a boost converter, which is a DC-

DC converter with the output voltage higher than the input voltage. More specifically, the 3SSC

boost converter modeled in Costa (2017) using the state-space averaging model. This is the

approximate model, so the diode voltage drop, switches resistances, transformer magnetizing

current and other parasitic resistances are not considered. The three states switching cell charac-

teristic is defined because of the converter topology which is described as follows. Furthermore,

Figure 27 illustrates the studied converter (BASCOPÉ, 2001).

Figure 27 – 3SSC Boost Converter
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According to Bascopé e Barbi (2000), Bascopé (2001) and Costa (2017), the three state
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switching cell operates according to the four different modes of the switches and diodes S1, S2

and D1, D2. Three of these modes are categorized as Continuous Conduction Mode (CCM),

i.e., the instantaneous inductor current is non-zero at all points in the cycle. Only the neutral

state is defined for the Discontinuous Conduction Mode (DCM). Following the topology of the

converter given in Figure 27, the operation modes are defined as:

• First state - the switches S1 and S2 are conducting (on) and the diodes D1 and D2 are

reverse biased (off).

• Second state - S1 and D2 are conducting (on) and S2 and D1 are blocked (off).

• Third state - S1 and S2 are blocked (off) and D1 and D2 are conducting (on).

• Neutral state - S1, S2, D1 and D2 are blocked (off).

6.1.1 Boost converter state space averaging model

The adopted model for the 3SSC boost converter follows the project developed in Costa

(2017), in which the system is designed through the state space averaging method developed in

Middlebrook e Cuk (1976). This method is defined by the average between the models for the

operation mode of S1 and S2 in CCM, which are expressed in the state space equations scheme

as (6.1).

˙̃x = A1(t)x̃+B1(t)Vg(t)

Vo(t) =C1(t)x̃+D1(t)Vg(t)

˙̃x = A2(t)x̃+B2(t)Vg(t)

Vo(t) =C2(t)x̃+D2(t)Vg(t)
(6.1)

where, the state variable is x̃(t) =
[

iL Vc

]T

, with iL as the inductor current and Vc the capac-

itor voltage.

Note that, an equivalent circuit is obtained from the classic boost, which has an electrical

circuit for the conducting switch and another for the blocked switch. Therefore, the average

model will result from the operation of these two circuits.

Hence, following the designed procedure developed in Costa (2017) the state matrices

from (6.1) are defined as:

S1 mode (Dcycle) :
A1 =






0 0

0 − 1
Co(Rco +Ro)




 , B1 =





1
L

0



 ,

C1 =

[

0
Ro

Rco +Ro

]

, D1 = 0.

(6.2)
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S2 mode (1−Dcycle) :
A2 =







Rco||Ro

L
− Rco

L(Rco +Ro)

− Rco

Co(Rco +Ro)
− 1

Co(Rco +Ro)






, B2 =





1
L

0



 ,

C2 =

[

Rco||Ro
Ro

Rco +Ro

]

, D2 = 0.

(6.3)

Thence, the state space averaging model for the converter is represented by (6.4) (COSTA,

2017; MIDDLEBROOK; CUK, 1976).

ẋ = At(t)x+Bt(t)u

y(t) =Ct(t)x+Dtu
(6.4)

with,

At(t) = A1(t)Dcycle +A2(t)(1−Dcycle)

Bt(t) = ((A1(t)−A2(t))X +(B1(t)−B2(t))Vg)

Ct(t) =C1(t)Dcycle +C2(t)(1−Dcycle)

Dt(t) = ((C1(t)−C2(t))X

(6.5)

where,

X =
Vg(t)

R′




1

(1−Dcycle)Ro(t)



 (6.6)

Thus, the state-space matrices At , Bt , Ct and Dt are expressed in (6.7), (6.8), (6.9) and

(6.10), respectively.

At =







−(1−Dcycle)(Rco||Ro(t))

L
−(1−Dcycle)Ro(t)

L(Rco +Ro(t))
(1−Dcycle)Ro(t)

Co(Rco +Ro(t))
− 1

Co(Rco +Ro(t))







(6.7)

Bt =







(
Ro(t)

L

)
(1−Dcycle)Ro(t)+Rco

(Rco +Ro(t))

− Ro(t)

Rco +Ro(t)







(
Vg(t)

R′

)

(6.8)

Ct =

[

(1−Dcycle)(Rco||Ro(t))
Ro(t)

Rco +Ro(t)

]

(6.9)

Dt =−Vg
Rco||Ro(t)

R′ . (6.10)

Besides, the output voltage is given by y(t) = Vo(t), u(t) represents the control signal, and the

term R′ can be defined as R′ = (1−Dcycle)
2Ro +Dcycle(1−Dcycle)(Rco||Ro).
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6.1.2 Polytopic uncertainties design

The analysis of (6.7)-(6.10) shows that the states matrices of the system are modified

over time according to input voltage (Vg) and the output power required (Po). Which can be

considered as the system uncertainties, since such parameters can vary unpredictably within the

designed operating limits. In addition, these variables are functions of the electrical parameters

load resistance (Ro) and duty cycle (Dcycle), respectively, as expressed in (6.11) and (6.12)

(COSTA, 2017).

Ro(t) = f (Po) =
V 2

o

Po
, Po ∈ [Pomin

,Pomax
] (6.11)

Dcyccle = f (Vg) = 1− Vg

Vo
, Vg ∈ [Vgmin

,Vgmax
]V (6.12)

Therefore, the converter uncertainties are represented through a polytopic structure with

four vertices, given by the operation point of the local models: f (Vgmax
,Pomax

), f (Vgmin
,Pomax

),

f (Vgmax
,Pomin

) and f (Vgmin
,Pomin

).

Rewriting (6.4) according to (6.11) and (6.12) the system becomes:

ẋ = At (Vg,Po)x(t)+Bt (Vg,Po)u(t)

y(t) =Ct (Vg,Po)x(t)+Dt (Vg,Po)u(t)
(6.13)

which represents a Linear Time Variant (LTV) system. Moreover, applying Euler discretization

method for a sample time Ts, (6.13) is given by (6.14).

x(k+1) = A(Vg,Po)x(k)+B(Vg,Po)u(k)

y(k) =C (Vg,Po)x(k)+D(Vg,Po)u(k)
(6.14)

Considering the above and the electrical parameters of the 3SSC boost converter as

resumed in Table 5, the discretized state matrices for the vertices of the system are given in

(6.15)-(6.18).



73

Table 5 – Electrical parameters of the 3SSC converter
Parameter Values

Input Voltage (Vg) 26−36 [V ]
Output Voltage (Vo) 48 [V ]
Duty Cycle (Dcycle) 0.25−0.46

Switching frequency ( fs) 20.8 [kHz]
Sample time (Ts) 1 [ms]
Inductor filter (L) 35 [µH]

Output capacitor (Co) 4000 [µF ]
Capacitor intrinsic resistance (Rco) 26.7 [mΩ]

Load resistance (Ro) 2.3−6.1 [Ω]
Output power (Po) 380−1000 [W ]

Source: The Author (2020)

∗ f (36V,1000W )

A1 =




−0.3003 −7.7390

0.0616 −0.1293



 B1 =




541.5626

69.7156



 ,

C1 =
[

0.0198 0.9885
]

D1 =−0.7304

(6.15)

∗ f (26V,1000W )

A2 =




−0.0788 −8.5609

0.0681 0.2528



 B2 =




816.3380

60.7607



 ,

C2 =
[

0.0143 0.9885
]

D2 =−1.0054

(6.16)

∗ f (36V,380W )

A3 =




−0.3267 −7.9527

0.0633 −0.1283



 B3 =




526.9417

71.2118





C3 =
[

0.01993 0.9956
]

D3 =−0.2802

(6.17)

∗ f (26V,380W )

A4 =




−0.0587 −8.8456

0.0704 −0.2734



 B4 =




806.3468

62.2455





C4 =
[

0.0144 0.9956
]

D4 =−0.3871

(6.18)

Furthermore, the TS fuzzy representation of the 3SSC boost converter is made through

a two-rules MFs implementation. Using the the duty cycle as input variable, which is a function
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of the input voltage, as expressed by (6.12). The fuzzy layout of this variable is done through

trapezoidal membership functions, illustrated in Figure 28.
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Figure 28 – Membership Functions.

6.2 Controller setup

The proposed controller procedure for the 3SSC converter application is illustrated by

the block diagram in Figure 29, and mathematically is expressed as follows. As presented in

Costa (2017), a integral control with two degree-of-freedom is added to the proposed scheme,

with the purpose of implementing a reference tracking mechanism instead of a regulator, and

also to minimize the steady-state error.

This integral mechanism is adjusted by the variables g and h, which are defined strate-

gically in order to guarantee the controller best performance. Hence, the model expressions for

the system are given by:

x(k+1) = A(k)x(k)+B(k)u(k) (6.19)

And the estimated states are given as,

x̂(k+1) = A(k)x̂(k)+B(k)u(k)+Lz(ŷ(k)− y(k)) (6.20)
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Figure 29 – Block Diagram for the 3SSC converter
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The derivative of integral action is given by,

v(k+1) = gv(k)+h(r(k)− y(k)) (6.21)

The control law follows the PDC rule as in,

u(k) =−Fzx̂(k)+KIz
v(k) (6.22)

with, Lz, Fz and KIz
obtained by the TS fuzzy association of the gains L j, Fj and KI j

, respectively.

Considering that the output and the estimated output are,

y(k) =C(k)x(k)+D(k)u(k)

ŷ(k) =C(k)x̂(k)+D(k)u(k)
(6.23)

the augmented state-equations model for this application is given in (6.24).







x(k+1)

x̂(k+1)

v(k+1)







=








A(k) −B(k)Fz B(k)KIz

−LzC(k) A(k)−B(k)Fz +LzC(k) B(k)KIz

−hC(k) hD(k)Fz g−hD(k)KIz















x(k)

x̂(k)

v(k)







+








0

0

h








r(k)

(6.24)

Furthermore, the weight matrices settings of the controller are defined as (6.25).

W =








1 0 0

0 10 0

0 0 1








and R = 1 (6.25)



76

and the variables g = 1 and h = 10 are defined by the tuning method in order to achieve the best

performance for the controller. The numerical implementation of the converter follows (6.15)-

(6.18), besides the initial states for real and observed states are defined as x = [38.4615 26]T

and x̂ = [30 20]T , respectively. The output voltage is set as Vo = 48V , and the input constraint

is imposed as umax = 0.5. Thence, the obtained fuzzy gains for the offline state observer are

given in (6.26).

L1 = [7.9225 0.1122]T

L2 = [8.6571 −0.2800]T
(6.26)

6.3 Simulation results

This section deals with the presentation and discussion of the results obtained through

the application of the proposed output feedback FMPC to the converter 3SSC boost converter.

As with Chapter 5, the responses over time and performance indexes are used to perform the

comparison. Besides, the robustness of the system is illustrated by stability invariant ellipsoids.

The obtained results are divided into the online and the offline procedure, presented in

Sections 6.3.1 and 6.3.2. These results were obtained through numerical simulation using the

YALMIP and the SEDUMI solver, to implement the LMIs. And the simulation of the 3SSC

boost converter model is done using the Runge-Kutta numerical method of order 4.

6.3.1 Online approach for 3SSC boost converter

The proposed application performance is analysed in comparison with the relaxed out-

put feedback MPC proposed in Rego (2019), adjusted to achieve its best results. Furthermore,

in order to analyze the controller performance considering the limiting situations found in lit-

erature, such as change of the operating point, constraints to the process, non-linearities and

non-minimum phase, the simulations are made with variation in the operation point over time,

as illustrated by Figure 30.

Considering this, Figure 31 displays the output response for a reference voltage Vo =

48V . From this figure, it can be seen that both controllers are able to maintain the reference

tracking throughout the simulation time, with oscillations only in the moments of change in

the operating point. However, the proposed controller presents a more stable, faster response

and with lower values of overshoot (26,8%) and undershoot (26,7%), which indicates a better

performance of this controller compared to 32,8% and 33%, respectively, from Rego (2019).
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Figure 30 – Operation point over time
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Figure 31 – Output response y(k)=Vo(k).
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The control efforts to achieve this output signal are illustrated in Figure 32, which shows

that the imposed constraint is satisfied by the two controllers. Nevertheless, the control signal

for the output feedback MPC from Rego (2019) presented a worse result, with more and larger

oscillations and bigger overshoots and undershoot values. Furthermore, differently from Rego
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(2019) the proposed technique does not reach the maximum input signal and does not present a

drop in the signal.

Figure 32 – Control signal u(k).
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Considering the aforementioned results, the performance indices for the studied con-

trollers are listed in Table 6. By the results analysis, it is possible to affirm that the proposed

controller has a better performance in terms of all evaluated metrics. It is also worth noting that

besides performing better, the proposed procedure presents a high improvement of simulation

time. Since, while the procedure of Rego (2019) has a simulation time of 2323s, the proposed

output feedback FMPC takes 359.7s to implement.

Table 6 – Performance indexes for the 3SSC boost application
Proposed Rego (2019)

IAE 154.1054 464.2698
ISE 1.6277×103 5.2553×103

ITAE 13.3235 52.5093
ITSE 120.6407 645.2785

J∞ 9.0326×105 9.5862×105

Source: The Author (2020)

Following with the results analysis, Figures 33 and 34 compared the real and estimated

states for the proposed approach. The obtained curves prove the good performance of the fuzzy
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state observer in estimating the inductor current (x1) and the capacitor voltage (x2).

Figure 33 – Real × Estimated state x1 for the proposed controller
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6.3.2 Offline approach for 3SSC boost converter

Analogously to Section 5.3.2, an offline application of the output feedback FMPC is

proposed to the 3SSC boost converter. With the results analysis also evaluated in terms of the

stability invariant ellipsoids, the time response and performances indexes in comparison with

the online procedure. Hence, following the steps from Theorem 6, the for the 3SSC converter,

the lookup table stores the matrices Q, obtained from (4.5)-(4.8), considering a set of twenty

voltage points xset , which are achieved from the system states. Furthermore, the fuzzy gains for

the controller with its associated points xset are also kept in the lookup table.

Thus, the set of matrices Qk, with k = 1, 2, ...,20 are obtained applying the offline

proposed procedure for the 3SSC converter model, with the results illustrated in Figure 35, and

their respective gains Fjk for the points xset(k) are listed in Table 3. Note that, in Figure 35

considering the dimension of the proposed application, the geometric representation of these

matrices are given by an 3-D ellipsoid, besides the 2-D projections for these ellipsoids are also

displayed. In addition, Figure 36 presents the geometric projection of those ellipsoids over time

and in contrast with xset . Analysing Figures 35 and 36 it is possible to see that the size of the
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Figure 34 – Real × Estimated state x2 for the proposed controller
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ellipsoids decreases as k reaches 20, thus inferring the tendency to stabilize the ellipsoids.

Following Costa (2017), another way to confirm the system stability, using the stability

invariant ellipsoids approach, is to impose the impulse response for the nominal operation point

of the model ((6.15)). Besides, this response must stay within the limits of the ellipsoid, and

tend to zero in a steady state. Moreover, considering the already illustrated stability tendency

of the ellipsoid Qk, the closed loop system is proven to stable for any value of k. Thus, it’s

up to the controller designer to choose the implemented gain. Therefore, choosing the gain

for the last iteration k = 20, the 3-D and 2-D geometric projection of Q20 in contrast with the

impulse response are illustrated in Figure 37. It is possible to notice that the impulse response

is restricted inside the limits of the ellipsoid, and the impulse response converge to the origin,

thus proving that the proposed controller guarantees the system stability.

Considering, the stability characteristic proven by the invariant ellipsoid analysis, the

chosen gain for k = 20 is implemented in order to perform a reference tracking controller as

discussed in Section 6.3.1, also considering the operation point change in time given in Figure

30. The obtained results for this case are illustrated in Figures 38-39, which show the compar-

ison between the proposed online and offline output feedback FMPC approaches. Analysing

these figures, it is possible to see the ability of the offline method to stabilize the system over

time and maintain the reference tracking, without significant performance loss compared to the
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Figure 35 – 3-D Stability invariant ellipsoids Qk and their 2-D projections.
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Figure 36 – Ellipsoids over time × xset
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Table 7 – Set of voltage points and fuzzy gains for the offline procedure
k xset F1 F2

1 48.0000 [−0.0005 −0.0019 0.0005]×100 [−0.0005 −0.0023 0.0005]×100

2 −3.6942 [−0.6727 −0.7562 0.5428]×10−3 [−0.0007 −0.0020 0.0006]×100

3 -23.6553 [−0.6556 −0.9611 0.5446]×10−3 [−0.0006 −0.0022 0.0006]×100

4 11.3360 [−0.0007 −0.0013 0.0006]×100 [−0.0006 −0.0024 0.0006]×100

5 7.8756 [−0.0006 −0.0013 0.0006]×100 [−0.0006 −0.0013 0.0006]×100

6 -9.0638 [−0.6605 −0.7872 0.5396]×10−3 [−0.0007 −0.0021 0.0006]×100

7 -0.5195 [−0.0006 −0.0013 0.0005]×100 [−0.0006 −0.0018 0.0005]×100

8 4.9506 [−0.0006 −0.0015 0.0006]×100 [−0.0006 −0.0026 0.0006]×100

9 -1.6958 [−0.0007 −0.0011 0.0005]×100 [−0.0007 −0.0017 0.0006]×100

10 -1.9171 [−0.0007 −0.0011 0.0006]×100 [−0.0007 −0.0019 0.0006]×100

11 1.6496 [−0.0006 −0.0019 0.0006]×100 [−0.0006 −0.0029 0.0006]×100

12 0.3478 [−0.0006 −0.0019 0.0006]×100 [−0.0006 −0.0028 0.0006]×100

13 -1.0017 [−0.0006 −0.0017 0.0006]×100 [−0.0007 −0.0024 0.0006]×100

14 0.2161 [−0.0006 −0.0019 0.0006]×100 [−0.0006 −0.0027 0.0006]×100

15 0.4384 [−0.0006 −0.0020 0.0006]×100 [−0.0006 −0.0029 0.0006]×100

16 -0.2874 [−0.0006 −0.0014 0.0005]×100 [−0.0006 −0.0021 0.0005]×100

17 -0.1152 [−0.0006 −0.0015 0.0005]×100 [−0.0006 −0.0022 0.0005]×100

18 0.1962 [−0.0006 −0.0019 0.0006]×100 [−0.0006 −0.0027 0.0006]×100

19 -0.0177 [−0.0006 −0.0016 0.0006]×100 [−0.0006 −0.0024 0.0005]×100

20 -0.0957 [−0.0006 −0.0015 0.0005]×100 [−0.0006 −0.0025 0.0006]×100

Source: The Author (2020)

online approach, for all evaluated parameters. Furthermore, the proposed offline procedure was

also able to conduct the imposed input constraint. This conclusion is also validated by the

obtained performance indices (presented in Section 5.3.1) comparison between the online and

offline approaches, which are given in Table 8.

Table 8 – Online × Offline performance indexes for the 3SSC boost application
Online Offline

IAE 154.1054 156.7138
ISE 1.6277×103 1.5735×103

ITAE 13.3235 13.5263
ITSE 120.6407 111.8618

J∞ 9.0326×105 9.0360×105

Source: The Author (2020)

The ability of the offline approach to estimate the converter states are also evaluated, and

the obtained results are displayed in Figures 40 and 41 showing that as well as with the online

procedure, the fuzzy state observer presents a good performance for both inductor current (x1)

and capacitor voltage (x2).



83

Figure 37 – Invariant ellipsoid × impulse response for 3SSC converter .
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When dealing with offline procedures, another important performance parameter is the

reduction in the implementation wasted time, for the proposed studied the offline approach pre-

sented a simulation time of 26.8213s while for the online procedure this value is of 308.6427s,

representing a time gain of over ten times. Therefore, considering all obtained results it is possi-

ble to establish the viability of applying the offline output feedback FMPC for the 3SSC boost

converter.

6.4 Chapter’s Summary

This chapter discusses the main objective of the dissertation: the application of the pro-

posed method to the 3SSC boost converter. In this scenario, the chapter presents the math-

ematical design of the converter along with the controller setup, including a block diagram

representation of the system. Following, the simulated results are described and analysed, first

for the online method and then for the offline procedure. For the online procedure, the studied

performance parameters were illustrated in comparison with the relaxed output feedback FMPC

from Rego (2019), which showed the better performance of the proposed technique including
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Figure 38 – Online × Offline output signal.
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Figure 39 – Online × Offline control signal.
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a expressive gain in the computation time waste. Besides, the offline approach also presented

viable results, since the displayed results were very similar to the one obtained for the online

procedure, a relevant gain in the computation time waste was also possible for this application.
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Figure 40 – Real × Estimated state x1 for the proposed offline approach
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Figure 41 – Real × Estimated state x2 for the proposed offline approach

0 0.05 0.1 0.15 0.2 0.25 0.3

25

30

35

40

45

50

55

60

65

Real State

Estimated State

V
C
[V
]

Time (s)

Source: The Author (2020)



86

7 CONCLUSION

This chapter resumes the main conclusions obtained during the study, therefore, the main

findings and considerations are discussed in Section 7.1 and some proposal for the continuation

of this work are presented in Section 7.2.

7.1 Final Considerations

This dissertation presented the basic theoretical aspect of fuzzy control and model pre-

dictive control, with the purpose of addressing a control method which unites the two strategies.

Furthermore, the proposed control methodology was designed using new conditions to rede-

fined an existing FMPC state feedback control, and also a fuzzy state observer. The controller-

observer structure was used to perform an output feedback controller, which had its stability

ensured from the development of new stability criteria. This configuration is often used to solve

practical difficulties of measuring all system states.

It is also worth mentioning the realization of descriptions for the overall procedures in

the form of theorems, which was defined for the online and offline approach. The latter with

the objective of solving a common problem in advanced control applications: the high compu-

tational and time expense. Thus, resuming the aforementioned step the dissertation proposed

an observer-based output feedback controller, considering the TS fuzzy model and the PDC

control law.

Considering the exposed, the proposal was validated through two different applications.

For both of them the online and offline approaches were evaluated. The online proposed the-

orem was analysed in comparison with benchmark output feedback MPC controllers, in order

to defined the performance quality of the proposed method. And the offline approach was

compared to the online procedure, with the objective of investigate the feasibility of using this

technique.

The first application was developed to solve the numerical example defined in Park et al.

(2011), and the online approach analysis was performed in comparison with the technique de-

veloped by Kim e Lee (2017) and Rego (2019). The obtained results evidenced an enhanced

performance than the benchmark controllers, considering all evaluated parameters, which con-

sist of time analysis, closed-loop poles in the z-plane and performances indexes. Now, for

the offline approach the same parameters was studied and a comparison between the obtained
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results from the online and offline methodology was applied. Analysing both performances,

it is possible to affirm the offline procedure viability, since there was a proximity of the two

responses for all parameters evaluated. Besides, the invariant ellipsoid concept was used to per-

form the stability analysis of the offline method, confirming the robust stability of the system.

The promising results obtained in the first application allowed the sequence of the study,

now considering the boost 3SSC converter, from Costa (2017), as the system model. The ob-

tained results was analysed similarly to the numerical example. Besides, the online approach

was compared with the online controller from Rego (2019), and once more all evaluated metrics

established the superiority of the proposed method over the chosen benchmark. It is also worth

highlighting the great computational and time gain of the online proposal of this dissertation

compared to the benchmark. Then, following for the offline approach this gain is even bigger,

and the controller was even able to maintain the conditions of the online performance. As with

the numerical example, the system stability for the 3SSC boost application, was also evaluated

in terms of the invariant ellipsoid, which also proved the overall controller stability.

Thus, considering the above, the good results obtained are encouraging and show the

possibilities of continuing this study. Furthermore, this study solves some common problems

found in the advanced control literature, especially when it comes to practical applications. As

can be highlighted the necessity of measuring all system states to perform a state feedback

control, which is sometimes impossible, and is solved for the observer-based output feedback

approach. Besides, the offline procedure is a welcome improvement, since it solves the issue of

high computational cost, which can make the system impracticable, and still maintain adequate

performance.

7.2 Future work proposals

At the end of this dissertation, some proposals for following the work started here are

defined as follows:

• Analyze the impact of fuzzy design on controller performance, through MFs.

• Use the type-2 fuzzy configuration in the controller design, with the objective of enhanc-

ing the controller performance. And also to analyze performance compared to the classi-

cal fuzzy approach.

• Compare the controller performance considering the PDC and non-PDC control laws.

• Include an Anti-Windup (A-W) actuator to the procedure, with the purpose of minimizing
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the difference between the nominal and saturated response. Moreover, to develop the A-

W law using the fuzzy PDC structure.

• Simulate the converter in software dedicated for modeling systems, as a way to validate

the theoretical simulation.

• Compare the controller-observer output feedback with a model with disturbances.

• Perform practical applications for the proposed output feedback FMPC controller, con-

sidering the boost converter, and possibly other complex plants with non-linearities.
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